

A publication of ISCA*:

International Society for Computers
and Their Applications

INTERNATIONAL JOURNAL OF

COMPUTERS AND THEIR
APPLICATIONS

TABLE OF CONTENTS
 Page

Guest Editorial . 57
 Gongzhu Hu, Yan Shi, and Takaaki Goto

Proposal and Evaluation of a Chinese Character Hash Function Based on
Strokes for Fingerprinting . 59

 Antoine Bossard

Analysis and Control of Linear Time-Varying (LTV) Systems . 66
 Robert N. K. Loh and K. C. Cheok

Logical Modeling of Adiabatic Logic Circuits using VHDL with Examples 79

 Lee A. Belfore II

Mining for Causal Regularities . 89

 Thomas Bidinger, Hannah Buzard, James Hearne, Amber Meinke, and
Steven Tanner

Integration of Multimodal Inputs and Interaction Interfaces for Generating

Reliable Human-Robot Collaborative Task Configurations . 97
 Shuvo Kumar Paul, Pourya Hoseine, Arjun Vettath Gopinath,

Mircea Nicolescue, and Monica Nicolescu

In Fra_OE: An Integrated Framework for Ontology Evaluation . 111

 Narayan C. Debnath;, Archana Patel, Debarshi Mazumder,
Phuc Nguyen Manh, and Ngoc Ha Minh

*“International Journal of Computers and Their Applications is Peer Reviewed”.

Volume 29, No. 2, June 2022 ISSN 1076-5204

International Journal of Computers and Their Applications

ISCA Headquarters…•…278 Mankato Ave, #220, Winona, MN 55987…•…Phone: (507) 458-4517
E-mail: isca@ipass.net • URL: http://www.isca-hq.org

Copyright © 2020 by the International Society for Computers and Their Applications (ISCA)

All rights reserved. Reproduction in any form without the written consent of ISCA is prohibited.

A publication of the International Society for Computers and Their Applications

EDITOR-IN-CHIEF

Ajay Bandi
 Associate Professpr

Department of Computer Science
One University Plaza, MS 5950

Southeast Missouri State University
Cape Girardeau, MO 63701

Email: zliu@semo.edu

ASSOCIATE EDITORS

Dr. Hisham Al-Mubaid
University of Houston
Clear Lake, USA
hisham@uhcl.edu

Dr. Antoine Bossard
Advanced Institute of Industrial
Technology
Tokyo, Japan
abossard@aiit.ac.jp

Dr. Mark Burgin
University of California,
Los Angeles, USA
mburgin@math.ucla.edu

Dr. Sergiu Dascalu
University of Nevada
Reno, USA
dascalus@cse.unr.edu

Dr. Sami Fadali
University of Nevada, USA
fadali@ieee.org

Dr. Vic Grout
Glyndŵr University
v.grout@glyndwr.ac.uk

Dr. Yi Maggie Guo
University of Michigan,
Dearborn, USA
hongpeng@brandeis.edu

Dr. Wen-Chi Hou
Southern Illinois University, USA
hou@cs.siu.edu

Dr. Ramesh K. Karne
Towson University, USA
rkarne@towson.edu

Dr. Bruce M. McMillin
Missouri University of Science
and Technology, USA
ff@mst.edu

Dr. Muhanna Muhanna
Princess Sumaya University
for Technology
Amman, Jordan
m.muhanna@psut.edu.jo

Dr. Mehdi O. Owrang
The American University, USA
owrang@american.edu

Dr. Xing Qiu
University of Rochester, USA
xqiu@bst.rochester.edu

Dr. Juan C. Quiroz
Sunway University, Malaysia
juanq@sunway.edu.my

Dr. Abdelmounaam Rezgui
New Mexico Tech, USA
rezgui@cs.nmt.edu

Dr. James E. Smith
West Virginia University, USA
James.Smith@mail.wvu.edu

Dr. Shamik Sural
Indian Institute of Technology
Kharagpur, India
shamik@cse.iitkgp.ernet.in

Dr. Ramalingam Sridhar
The State University of New York
at Buffalo, USA
rsridhar@buffalo.edu

Dr. Junping Sun
Nova Southeastern University,
USA
jps@nsu.nova.edu

Dr. Jianwu Wang
University of California,
San Diego, USA
jianwu@sdsc.edu

Dr. Yiu-Kwong Wong
Hong Kong Polytechnic University,
Hong Kong
eeykwong@polyu.edu.hk

Dr. Rong Zhao
The State University of New York
 at Stony Brook, USA
rong.zhao@stonybrook.edu

http://www.isca-hq.org/
mailto:rkarne@towson.edu

IJCA, Vol. 29, No. 2, June 2022 57

Guest Editorial

This issue of IJCA is a collection of six refereed papers, four of which are selected from the 34th
International Conference on Computer Applications in Industry and Engineering (CAINE 2021). The
other two papers in this issue are regular submissions to IJCA.

Each paper submitted to this issue was reviewed judging the originality, technical contribution,
significance and quality of presentation.

The papers in this issue cover a wide range of research interests in the community of computers and
applications. The topics and main contributions of the papers are briefly summarized below.

Antoine Bossard of Kanagawa University, Japan, proposed in their paper “Proposal and Evaluation
of a Chinese Character Hash Function Based on Strokes for Fingerprinting” practical approaches a novel
hash function for Chinese character encoding. The proposed hash function is solely based on the strokes
of the character to make it non-ambiguous. The function with low collision rate was evaluated both
theoretically and in practice to show its validity and applicability.

Robert N. K. Loh and K. C. Cheok of Oakland University, USA, in the paper “Analysis and Control
of Linear Time-Varying (LTV) Systems” investigated the problem of determining analytical solutions
for the fundamental and state transition matrices associated with linear time-varying (LTV) systems. It
provided a thorough theoretical analysis as well as examples to demonstrate the analysis.

Lee A. Belfore of Old Dominion University, USA, proposed a logic level modeling framework for
adiabatic circuit operation using the Very High Speed Integrated Circuit Hardware Description Language
(VHDL), in the paper “Logical Modeling of Adiabatic Logic Circuits using VHDL with Examples.” Three
modeling examples with simulation results were given to demonstrate the use of the framework.

Thomas Bidinger, Hannah Buzard, James Hearne, Amber Meinke and Steven Tanner of
Western Washington University, USA, proposed an algorithm by exploring the theory of causal regularity
and applied it to a number of real-world data sets to identify causal relationships in them, in the paper
“Mining for Causal Regularities.” Experiments on several data sets showed the proposed algorithm could
successfully identify singular and conjunctive conditions that serve as possible causes for a chosen event.

Shuvo Kumar Paul, Arjun Vettath Gopinath, Mircea Nicolescu, and Monica Nicolescu
of University of Nevada, Reno, USA, and Pourya Hoseini of University of California, San Diego,
USA, in the paper “Integration of Multimodal Inputs and Interaction Interfaces for Generating Reliable
Human-Robot Collaborative Task Configurations” addressed reliability and trust problems in human-
robot interaction with a proposed framework that integrates pointing gesture and speech with sensor
input to generate reliable task configurations for human-robot collaborative environment.

Narayan C. Debnath, Archana Patel, Debarshi Mazumder, Phuc Nguyen Manh, and Ngoc
Ha Minh of Eastern International University, Vietnam, presented an ontology evaluation framework
that is an integration of four known approaches to deal with different criteria of evaluation in their paper
“InFra OE: An Integrated Framework for Ontology Evaluation.” The framework may overcome some
shortcomings of these individual methods.

As guest editors we would like to express our appreciation of the contributions of the authors, as well
as the experts who reviewed all the papers submitted to this issue. We also thank the help and support
from Dr. Ajay Bandi, the editor-in-chief of IJCA.

ISCA Copyright c© 2022

58 IJCA, Vol. 29, No. 2, June 2022

We hope you enjoy this issue of IJCA. More information about the ISCA society can be found at
http://www.isca-hq.org.

Guest Editors

Gongzhu Hu, Central Michigan University, USA
Yan Shi, University of Wisconsin Platteville, USA
Takaaki Goto, Toyo University, Japan

June 2022

http://www.isca-hq.org

IJCA, Vol. 29, No. 2, June 2022 59

Proposal and Evaluation of a Chinese Character Hash Function

Based on Strokes for Fingerprinting*

Antoine Bossard†

Kanagawa University

Tsuchiya 2946, Hiratsuka, Kanagawa 259-1293, JAPAN

Abstract

Chinese character representation in computer systems has

been a long-standing issue, which is directly related to the

information representation and character encoding fields of

computer science. For example, as of today some Chinese

characters still cannot be easily input in a computer, let alone

be universally represented (identified). In this research, we

have been especially focusing on such Chinese characters that

are not covered by the conventional character encodings, and

in this paper, after having previously introduced a universal

character encoding for Japanese, we propose a non-ambiguous

hash function applicable to any Chinese character. Unlike

previous and related works, the proposed function is solely

based on the strokes of the character, thus leaving no room for

ambiguity. Considering the sparsity and the low collision rate

of the described hash function, fingerprinting is a meaningful

application, which can then be used for information retrieval

purposes, among others. Let us emphasize that simplicity and

unambiguity are the two keys of this proposal. The described

character hashing method is then evaluated both theoretically

and in practice in order to quantitatively show its validity,

applicability and contribution.

KeyWords: Japanese; Chinese; kanji; character; symbol.

1 Introduction

Because Chinese characters are tens of thousands, their

representation and processing in general has always been a

difficult issue for computer systems. Several approaches were

considered as hardware and software evolved over the years. In

the early days of computing, the characters were hard-coded into

read-only memory (ROM), a solution that is interestingly still in

use today for example with some LCD panels [8]. Due to the

lack of flexibility of this ROM approach, logical encodings such

as those defined by the Japanese Industrial Standards Committee

(JISC) rapidly replaced it.

There are two main approaches for such logical character

encodings: the unifying approachwhich considers all thewriting

*This paper is an extended version of [1].
†Graduate School of Science. Email: abossard@kanagawa-u.ac.jp.

systems at once, followed for instance by Unicode [16], and

the non-unifying approach which includes the encodings that

are local to one writing system, such as Shift-JIS for Japanese.

Because both of these two approaches fail at addressing the

representation of any Chinese character, we recently proposed

a universal character encoding for Japanese (UCEJ) [5], which

is based on a three dimensional space used to assign distinct

coordinates to characters. As per the definition of UCEJ, the first

coordinate identifies the character radical, the second coordinate

holds the number of strokes of the character and the third one

distinguishes variants (forms) of a same character.

It is well known that some Chinese characters are

morphologically structured according to composition patterns,

such as vertical and horizontal combinations [2, 3, 7, 15]. Such

(de)composition patterns can sometimes be ambiguous (e.g. the

definition of the support set R̃ of [2]), and moreover they cannot

be applied directly to character strokes since strokes, unlike

characters, are not structured according to easily identifiable

patterns. Hence, this decomposition approach is not a solution

to unambiguous character representation.

Besides, a conventional character encoding like Unicode

cannot be used as a hashing function given that only a limited

number of characters are covered: many Chinese characters are

left unsupported, that is unassigned to a code point, and this

is typically the case of Chinese characters that are local to one

culture, such as the kokuji characters of Japanese [2]. Because

aimed at supporting any character, the conventional encoding

UCEJ could be considered for hashing and fingerprinting, but

since the hash value (coordinate) that corresponds to a character

cannot be fully deterministically calculated, this is not a solution

either.

In continuation of UCEJ, the objective of this research is the

proposal of a non-ambiguous hash function that can be applied to

anyChinese character. Identification of any Chinese character in

a unique and unambiguous manner is a first application. Given

in some cases the existence of numerous variants for a same

character – regularly excluded from conventional encodings –

this is a far from trivial issue. Hence, calculating a Chinese

character fingerprint is meaningful to refer to a character that

is absent from conventional encodings.

The rest of this paper is organized as follows: hashing,

ISCACopyright© 2022

https://orcid.org/0000-0001-9381-9346

60 IJCA, Vol. 29, No. 2, June 2022

fingerprinting and character properties are briefly recalled in

Section 2. The proposed hash function is then presented in

Section 3. It is next theoretically and practically evaluated in

Sections 4 and 5, respectively. Section 6 concludes this paper.

2 Preliminaries

We first make a brief recall regarding hashing. Hash functions

are frequently encountered in computer science: they are used to

calculate an index from a datum so that this datum can be used to

directly refer to, for example, the corresponding entry in a table

in memory. In the case of table indices, the calculated values are

expected to fall within a range so that the table entries tend to

be consecutive in memory, and this without any assumption on

the sizes of the original data. Besides, the indices calculated for

distinct data are expected to be distinct too. If they are not, we

say that collisions occur [12].

Such a function which realizes a mapping between data and

identifiers, like indices, has other applications, for instance

fingerprinting: rather than calculating consecutive or near

consecutive table indices, a fingerprint is typically used to

identify a datum of arbitrary size, and this with a more or less

short value. This is comparable to the scientific applications

of human fingerprints. The algorithm described by Rabin is a

classic fingerprinting example [6].

Figure 1: taito

Next, we recall essential properties of

the Chinese characters. Each Chinese

character has one radical, although there

exist some characters for which the

radical is not clearly identified, or at

least is still debated (this is especially the

case for characters that have undergone

simplifications [2]). Each character has

at least one reading, although there are

usually several, especially when various

languages whose writing system involves

Chinese characters are considered.

A character is made of strokes (calligraphic brush strokes),

and there is a consensus that the highest number of strokes in a

Chinese character, at least in Japanese, is 84. This character,

illustrated in Figure 1, is the taito character (a.k.a. daito,

otodo) [9]. Furthermore, the strokes of a character are drawn

in a precise order, although this order may depend on the

writing system considered [2]. Besides, it should be noted

that a character can have variants, which are in some cases

numerous [13]. Additional details can be found for example

in [14].

3 Methodology

We describe in this section the proposed hash function. This

function is solely based on character strokes: it relies on the

stroke number, the stroke types and the stroke writing order.

Because it is essential, we emphasize here that this approach

to the function definition induces no ambiguity at all. For

comparison, we relied in previous researches for character

processing on character radicals and character decomposition

operations, two properties which are more (the latter) or less

(the former) ambiguous. As recalled in Section 2, the number

of strokes, the types of the strokes and the writing order of the

strokes for a Chinese character is indeed unambiguously defined.

Even if the writing order of the character strokes may differ

for a few characters from one writing system to another, such

as between Japanese and Chinese, it is clearly defined when

considering one writing system. For example, the stroke order

of the Chinese characters used in Japanese has been formally

established by the Japanese government [10].

So as to lower the collision probability, the proposed function

involves all the three aforementioned stroke properties: stroke

number, stroke types and stroke order. Regarding stroke types,

36 strokes have been defined by the Unicode consortium for

Chinese characters: this is the 31C0–31EF code block [16].

These 36 strokes are shown in Table 1; we have assigned to each

of them (columns labeled “Str.”) a unique identifier (columns

labeled “Id.”).

Table 1: The 36 strokes for Chinese characters (Unicode block

31C0–31EF).They are each assigned a unique identifier

Id. Str. Id. Str. Id. Str. Id. Str. Id. Str. Id. Str.

0 ㇀ 6 ㇆ 12 ㇌ 18 ㇒ 24 ㇘ 30 ㇞
1 ㇁ 7 ㇇ 13 ㇍ 19 ㇓ 25 ㇙ 31 ㇟
2 ㇂ 8 ㇈ 14 ㇎ 20 ㇔ 26 ㇚ 32 ㇠
3 ㇃ 9 ㇉ 15 ㇏ 21 ㇕ 27 ㇛ 33 ㇡
4 ㇄ 10 ㇊ 16 ㇐ 22 ㇖ 28 ㇜ 34 ㇢
5 ㇅ 11 ㇋ 17 ㇑ 23 ㇗ 29 ㇝ 35 ㇣

Define S the set of these 36 character strokes, and k : S →
{0,1, . . . ,35} the bijection between a stroke and its identifier.

Let C be the set of Chinese characters; it is recalled that its

cardinality is unknown. For a character c ∈C of n ∈ N∗ strokes
si ∈ S (0 ≤ i ≤ n− 1) and of stroke order that induced by the

relation i < j ⇒ si written before s j (0 ≤ i, j ≤ n−1), we define
the hash function h as follows:

h : C → N

c 7→
n−1

∑
i=0

26i k(si)

In other words, stroke identifiers are each represented with six

bits, and the stroke number as well as the stroke order are

directly induced by the concatenation of 6-bit sequences. The

fingerprint can thus be conveniently represented with the octal

notation: each stroke corresponds to two octal digits. Examples

of fingerprint calculations are given in Table 2; in this table, the

stroke order is indicated from left to right and fingerprints are

given in the octal notation, with the most significant digit on the

left.

Once a fingerprint has been obtained, it can then be adjusted

for hashing purposes (e.g. hash table), that is, to reduce the

IJCA, Vol. 29, No. 2, June 2022 61

Table 2: Fingerprint calculation for sample Chinese characters

Character Stroke number Stroke types and stroke order Fingerprint (octal notation)

大 “large” 3 ㇐,㇒,㇏ 17 22 20
水 “water” 4 ㇚,㇇,㇒,㇏ 17 22 07 32
凧 “kite” 5 ㇒,㇈,㇑,㇆,㇑ 21 06 21 10 22
迄 “until” 7 ㇒,㇐,㇠,㇔,㇔,㇋,㇏ 17 13 24 24 40 20 22

sparsity of the obtained fingerprints. This would be at the cost of

an increased collision rate though. For example, hashing with

folding by summing each stroke value, or division hashing by

applying a modulo function to the obtained fingerprints.

4 Theoretical Evaluation: Size and Sparsity

4.1 Memory Size Requirements

First, let us compare the size of fingerprints versus the size

of a character coordinate in UCEJ. To this end, we first recall

that each character stroke is represented on 6 bits, and that the

highest number of strokes in a Chinese character, at least in

Japanese, is 84 is a consensus. So, a character of n strokes

requires at most 6n bits (“at most” because the last stroke may

not require all the six bits, thus resulting in a few zeros at

the MSB, in other words digits that can be discarded). So,

an n-stroke character is expressed on at most 6n/8 = 0.75n
bytes. On the other hand, the coordinate of any character in

UCEJ takes 10 bytes [5]: the required memory size does not

depend on the character. And in the case of the refinement

of UCEJ which takes into account stroke types and the stroke

order, each character coordinate takes 38 bytes, again no matter

the character [4]. This memory size requirement comparison is

illustrated in Figure 2; because a conventional encoding such

as Shift-JIS or Unicode only supports a fraction of the Chinese

characters, it is not included in this comparison as it would be

obviously largely unfair. Given that the vast majority of Chinese

characters have at most 30 strokes (this is further detailed in

Section 4.2 below), the memory size taken by a fingerprint

remains reasonable compared to a UCEJ coordinate.

It is however critical to note that a UCEJ coordinate cannot

be completely calculated from a character: as recalled in

the introduction, the UCEJ lookup function calculates from a

character its X and Y coordinates only, thus not involving Z.

This is a major drawback compared to the fingerprint calculation

method proposed herein, and one reason for that lookup function

not being a suitable hashing function.

4.2 Hash Function Sparsity

Next, we analyze the projected sparsity of the calculated

fingerprints. Directly from above, we have that the fingerprint of

a 1-stroke character is in the interval [0,26−1] (since six bits per
stroke), that of a 2-stroke character in the interval [26,212 − 1]
(since twelve bits for the two strokes) and so on. Because a

0 20 40 60 80

0

20

40

60

number of strokes

b
y
te
s

Fingerprint UCEJ Refined UCEJ

Figure 2: Memory size requirement of a fingerprint versus a

UCEJ coordinate

character includes at most 84 strokes as recalled, a fingerprint

consists in at most 84 × 6 = 504 bits. Therefore, there are a

total of 2504 distinct fingerprints, which is of course significantly

larger than the number of Chinese characters (even if only an

estimation, several tens of thousands, of this character grand

total is known). So, the character density in the range of the

possible fingerprint values is globally low.

The distribution of the stroke number of the Chinese

characters used in Japanese is illustrated in Figure 3. For

reference, we have represented in the same plot the maximum

number of bits required to represent the fingerprint of a character

depending on the stroke number. These data have been extracted

from the List of MJ Characters provided by the Japanese

Character Information Technology Promotion Council [11].

This database includes in total 58 862 characters. Note that 84

has been considered as the highest stroke number as explained,

but since the otodo character does not appear in the database,

the number of occurrences therein is 0. Hence, although this

database is rather exhaustive, the zero number of occurrences as

soon as stroke number 65 is yet another indicator of the lacking

support of the Chinese characters by computer systems.

It should be noted that the proposed fingerprinting algorithm

is not perfect in the sense that it is possible – although rather rare

– to find two distinct characters that induce the same fingerprint,

for example 引 hiku and 弔 tomurau, both of fingerprint 21

62 IJCA, Vol. 29, No. 2, June 2022

0 10 20 30 40 50 60 70 80 90

0

1,000

2,000

3,000

4,000

5,000

number of strokes

Maximum number of bits Character occurrences

Figure 3: Distribution of the stroke number of the Chinese characters used in Japanese

11 20 25 (octal notation). In other words, the described

hashing function is not injective. In an attempt to further

reduce the collision rate, additional character properties could be

considered. Nonetheless, this would be at the cost of increased

ambiguity in the function definition. It is recalled that we

have completely eliminated such ambiguity with the approach

proposed in this paper. Besides, in this search for a perfect

hashing function, it will become clear that the successively

established functions, defined at the beginning in a discrete

manner, will inevitably evolve towards a continuous (i.e. non-

discrete) function, which is problematic considering the hashing

applications.

Finally, it is interesting to remark the following paradox

regarding character density: the characters that have the greatest

stroke number are those whose fingerprint occupies the greatest

number of bits but which are the least “dense” characters. That

is, when considering characters of at most n strokes, the number
of representable such characters is 26n, but at the same time

as n increases, the number of n-stroke characters (i.e. character
occurrences) decreases. This is clearly visible in Figure 3.

5 Practical Evaluation: Collision Analysis

5.1 Methodology

In this section, we conduct another quantitative analysis

by measuring in practice the collision rate of the proposed

hash function. To this end, we have generated a database

that associates to a Chinese character the ordered sequence of

its strokes, such including the stroke types and stroke order

information.

This database is essential to this work; it has been created with

the following recursive algorithm.

Step 1. We have manually defined character (topmost)

decompositions: only the vertical and horizontal

composition operations have been considered, which

is not an issue since these two composition operations

cover the vast majority of Chinese characters (more than

80% for a representative character subset [2]).

For instance, the topmost decomposition operation of the

character加 is defined as the algebraic expression力+口,

with “+” the horizontal composition operation.

Step 2. We have manually defined the ordered stroke sequence

for a few characters that are “prime”, that is which cannot

be further decomposed [2]. This is typically the case for

character radicals. This step induces the base case of the

recursion.

For instance, the ordered stroke sequence for the

character radical禾 is manually defined as: ㇒,㇐,㇑,㇒,

㇏.

Step 3. For each character c of the database obtained at Step 1,
we recursively calculate its ordered stroke sequence as

follows: if a stroke sequence for c has been already defined
(i.e. during Step 2 or Step 3), it is returned. Otherwise, let

c1•c2 be the decomposition of c obtained from the database

of Step 1, with “•” a composition operation such as “+”.
We apply this process recursively on c1 and c2 to obtain the

ordered stroke sequences c̄1 and c̄2, respectively. Let c̄ be
the concatenation of the two ordered stroke sequences c̄1
and c̄2. We record and return this newly obtained ordered

stroke sequence c̄ for the character c.

This stroke sequence calculationmethod is exemplified below.

For instance, consider c =量. No stroke sequence exists for

this character. Its decomposition 旦×里 is obtained from the

database of Step 1, with “×” the vertical composition operation.
Next, we have c = 旦. No stroke sequence exists for this

IJCA, Vol. 29, No. 2, June 2022 63

character. Its decomposition 日 ×一 is obtained from the

database of Step 1.

So, we have c = 日. This character is prime, and thus its

ordered stroke sequence has already been calculated (Step 2); it

is returned: ㇑,㇕,㇐,㇐. Then, we have c =一. This character

is also prime, and thus its ordered stroke sequence has already

been calculated (Step 2); it is returned: ㇐.

Hence, the ordered stroke sequence for c = 旦 is obtained

by concatenation: ㇑, ㇕, ㇐, ㇐, ㇐. Next, we have c =里.

This character is prime, and thus its ordered stroke sequence has

already been calculated (Step 2); it is returned: ㇑, ㇕, ㇐, ㇐,

㇑,㇐,㇐. Therefore, the ordered stroke sequence for c =量 is

obtained by concatenation: ㇑,㇕,㇐,㇐,㇐,㇑,㇕,㇐,㇐,㇑,

㇐,㇐.

It is important to note that this newly created stroke sequence

database is not perfect: for example, we assume that the stroke

order for a character decomposed as c1 • c2 consists first of the

strokes of c1 and then of those of c2. This is true in most cases,

but there can be exceptions, albeit rare. In addition, some stroke

sequences are assumed, like ㇔, ㇔, ㇀ (i.e. 氵) for 水. That

is, when the character水 is encountered, its stroke sequence is

assumed to be that of its variant氵; in this research, this variant
氵largely supersedes水 so this assumption is safe.

Also, all the decomposition operations identified for Chinese

characters (refer to [2]) are not present in the decomposition

database (i.e. the first step of the algorithm), so the calculated

fingerprints are for a part of the characters. But as recalled

previously, the horizontal and vertical decomposition operations

cover the vast majority (80%) of characters. Hence, this suffices

to obtain representative fingerprints.

5.2 Results

We give in this section raw results of the collision analysis

experiment. These results are discussed in the next section. First,

the distribution of the calculated ordered stroke sequences based

on the stroke number is shown in Figure 4.

0 5 10 15 20

0

20

40

60

80

100

120

number of strokes

ch
ar
ac
te
r
o
cc
u
rr
en
ce
s

Figure 4: Distribution of the calculated ordered stroke

sequences based on the stroke number

Next, we quantitatively measure collisions: 46 characters

have not a unique ordered stroke sequence, and have thus not

a unique fingerprint. These characters for which hash collisions

would occur are summarized in Table 3. In this table, characters

are grouped so that the character of a same group have the

same ordered stroke sequence. The stroke number is also given

for reference. The groups marked with an asterisk (*) need

additional explanations: they are given in the next section.

Table 3: Asummary of the detected collisions, that is, characters

which have a non-unique ordered stroke sequence.

Characters are grouped when they have the same

ordered stroke sequences

Character group Strokes Character group Strokes

人,八 2 𠮷,吉 6

力,刀 2 伝,会 * 6

土,工,士 3 隶,彔 * 6

彳,心 * 3 貝,旲 7

日,曰 4 呈,里 7

太,犬 4 昌,昍 8

六,文 4 径,怪 8

公,仏 * 4 治,冶 * 8

肉,月 * 4 査,相 9

召,加 5 唄,員 10

旦,目,且 5 准,淮 * 11

Finally, we have extracted from the realized character stroke

database the occurrence frequency of each of all the stroke types

(refer to Table 1). The details of this analysis are given in Table 4.

In this table, the stroke identifier (“Id.”), visual rendering

(“Str.”), number of occurrences (“Occur.”) and percentage are

given for each detected stroke.

Table 4: Frequency of the stroke types as calculated from the

realized database

Id. Str. Occur. % Id. Str. Occur. %

16 ㇐ 2 769 30.28 31 ㇟ 100 1.09

17 ㇑ 1 565 17.12 22 ㇖ 95 1.04

18 ㇒ 1 245 13.62 25 ㇙ 58 0.63

20 ㇔ 1 004 10.98 2 ㇂ 33 0.36

21 ㇕ 546 5.97 8 ㇈ 29 0.32

15 ㇏ 518 5.66 4 ㇄ 26 0.28

6 ㇆ 216 2.36 23 ㇗ 21 0.23

26 ㇚ 205 2.24 12 ㇌ 16 0.17

19 ㇓ 182 1.99 1 ㇁ 12 0.13

28 ㇜ 180 1.97 27 ㇛ 12 0.13

0 ㇀ 176 1.92 9 ㇉ 5 0.05

7 ㇇ 127 1.39 30 ㇞ 4 0.04

64 IJCA, Vol. 29, No. 2, June 2022

5.3 Discussion

Ordered stroke sequences for a total of 1 014 characters

were successfully calculated. The distribution of the calculated

ordered stroke sequences according to the stroke number shown

in Figure 4 shows that the characters for which stroke sequences

were calculated have a distribution that is a on a par with

Chinese characters in general (see Figure 3) and thus the validity

(generality) of the results obtained in this experiment.

The collision analysis shows that only 46 characters that

induce collisions were found, and this in 22 character groups.

In other words, this is a collision rate of approximately 4.5%.

However, it should be noted that 14 out of these 46 characters

are false positives (they are marked with an asterisk in Table 3):

for example, the collisions induced by the two character pairs

(准, 淮) and (治, 冶) are false positives: they are detected as

collisions because of database assumptions (precisely, that水 is

assumed to be of the form氵), and will thus not induce collisions
in practice. This is also the case for the character pairs (肉,

月), (彳, 心), (公, 仏) and (伝, 会): they are found to induce

collisions as well since we assumed 肉 to be of the form 月,

心 to be of the form忄and亻to be of the form人 for the same

reasonwe assumed水 to be of the form氵. Finally, this is also the
case for the pair隶,彔: the character element彐 was assumed

as a simplification of character strokes. Hence, the collision

rate in this experiment actually amounts only to 3.2% (i.e. 32

characters).

Regarding the stroke type analysis, in total 9 144 strokes

were enumerated, and several stroke types were absent from

the database: 24 stroke types were detected out of the total 36

(see Table 1). The frequency of the horizontal stroke㇐ (more

than 30%) is significantly higher than that of the rest. It is not

a surprising result since the fact that this stroke is also both a

radical and a character (一) shows the omnipresence of this brush

drawing.

6 Conclusions

Theprocessing, let alone representation, of Chinese characters

in computer systems has been a long-standing issue. It is, for

example, still not possible to input some characters into systems,

albeit infrequently used ones. To tackle this problem, we have

recently introduced a universal character encoding for Japanese

(UCEJ). However, UCEJ still lacks a fully deterministic way of

calculating the code point of a character. Directly related to this

issue, in this paper we have described a non-ambiguous hashing

function for fingerprinting Chinese characters. One objective

of this work is to facilitate the identification and processing

in general of Chinese characters by computer systems. The

proposed hashing method has been both theoretically and

practically evaluated so as to quantitatively show its validity,

applicability and contribution.

As for future works, refining the function definition in

an attempt to further reduce the collision probability of the

computed fingerprints is a meaningful objective. This however

involves several issues, like the sparsity of the hash values,

the collision rate, and the simplicity and discreteness of the

established function, and because they are interdependent there

is no other way but to consider them simultaneously.

References

[1] Antoine Bossard. “A Chinese Character Hash Function

Based on Strokes for Fingerprinting.” Proceedings of the

34th International Conference on Computer Applications

in Industry and Engineering (CAINE; 11–13 October,

online), EPiC Series in Computing, 79:64–70, 2021.

[2] Antoine Bossard. Chinese Characters, Deciphered.

Kanagawa University Press, Yokohama, Japan, March

2018.

[3] Antoine Bossard andKeiichi Kaneko. “Chinese Characters

Ontology and Induced Distance Metrics.” International

Journal of Computers and Their Applications,

23(4):223–231, 2016.

[4] Antoine Bossard and Keiichi Kaneko. “Refining

the Unrestricted Character Encoding for Japanese.”

Proceedings of 34th International Conference on

Computers and Their Applications (CATA; 18–20

March, Honolulu, HI, USA), EPiC Series in Computing,

58:292–300, 2019.

[5] Antoine Bossard and Keiichi Kaneko. “Unrestricted

Character Encoding for Japanese.” Databases and

Information Systems X, Frontiers in Artificial Intelligence

and Applications, 315:161–175, January 2019.

[6] Andrei Z. Broder. “Some Applications of Rabin’s

Fingerprinting Method.” Sequences II, pp. 143–152, 1993.

[7] Osamu Fujimura and Ryohei Kagaya. “Structural Patterns

of Chinese Characters.” Proceedings of the Conference on

Computational Linguistics (1–4 September, Sånga-Säby,

Sweden), pp. 1–17, 1969.

[8] Hitachi, Tokyo, Japan. HD44780U (LCD-II) (Dot Matrix

Liquid Crystal Display Controller/Driver), ADE-207-

272(Z), ’99.9, Rev. 0.0, 1998.

[9] Takehiro Ito. “辞書になかった最多画数の漢字「幽霊
文字」の怪…「タイト」さんをご存じないですか?”

TheYomiuri Shimbun (online), November 2020. https://
www.yomiuri.co.jp/life/20201030-OYT8T50053/
In Japanese. Last accessed June 2022.

[10] Japanese Ministry of Education, Science, Sports and

Culture (文部省). 筆順指導の手びき. First Edition. In

Japanese, March 1958.

[11] Japanese Character Information Technology

Promotion Council (一般社団法人 文字情報技術促進
協議会). List of MJ characters (MJ文字情報一覧表).

https://moji.or.jp/mojikiban/mjlist/ Version

006.01. In Japanese, May 2019. Last accessed June 2022.

https://www.yomiuri.co.jp/life/20201030-OYT8T50053/
https://www.yomiuri.co.jp/life/20201030-OYT8T50053/
https://moji.or.jp/mojikiban/mjlist/

IJCA, Vol. 29, No. 2, June 2022 65

[12] Donald E. Knuth. The Art of Computer Science – Volume

3, Second Edition. Addison-Wesley, Boston, MA, USA,

1998.

[13] Kyoo-Kap Lee. “Causes of Variant Forms as a Result of

Structural Changes to Character Components.” Journal of

Chinese Writing Systems, 1(1):29–35, 2017.

[14] Ken Lunde. CJKV Information Processing, Second

Edition. O’Reilly Media, Sebastopol, CA, USA, 2009.

[15] Richard Sproat. A Computational Theory of Writing

Systems. Cambridge University Press, Cambridge,

England, 2000.

[16] The Unicode Consortium. The Unicode Standard 5.0.

Addison-Wesley, Boston, MA, USA, 2007. More recent

versions accessible online at http://www.unicode.
org/versions/latest/ Last accessed June 2022.

Antoine Bossard received the B.S.

and M.S. degrees from Université

de Caen Basse-Normandie, France in

2005 and 2007, respectively, and the

Ph.D. degree from Tokyo University

of Agriculture and Technology, Japan

in 2011.

He is an Associate Professor of

the Graduate School of Science,

Kanagawa University, Japan. His research is focused on graph

theory, interconnection networks, and dependable systems. For

several years, he has also been conducting research regarding

Chinese characters and their processing by computer systems.

He is a member of ACM, ACIS, ISCA, and TUG.

http://www.unicode.org/versions/latest/
http://www.unicode.org/versions/latest/

66 IJCA, Vol.29, No. 2, June 2022

ISCA Copyright© 2022

Analysis and Control of
Linear Time-Varying (LTV) Systems

Robert N. K. Loh* and K. C. Cheok*
Oakland University, Rochester, MI, 48309-4401, USA

Abstract

Consider a linear time-varying (LTV) system described by
the state-space equation () () ()t t t= +x A x B u . The main
objectives of this paper include (i) determination of the
analytical or closed-form solutions for the fundamental matrix
X(t) and the state transition matrix (,)ot tΦ of the LTV system;
(ii) design of feedback control, such that the closed-loop
system matrix () () () ()cl t t t t= −A A B K , where K(t) is a gain
matrix, has desirable properties, in particular, ()cl tA being
commutative and triangular; and (iii) design of observers such
that the observer matrix Ao(t)=A(t)-H(t)C(t), where H(t) is the
observer gain matrix, has desirable properties as in (ii),
namely, Ao(t) being commutative and triangular. The
commutativity and triangularization of ()cl tA and Ao(t)
facilitate the analytical solutions for their fundamental and
state transition matrices. Examples and simulations
demonstrate the design objectives.

Key Words: Linear time-varying (LTV), feedback,
controller, observer, commutativity, triangular, separation
principle, triangulatiaon, commutativity.

1 Linear-Time-Varying (LTV) Systems

Consider an nth-order linear time-varying (LTV) system
described by the state-space equation:

() () (), () ,o ot t t t= + =x A x B u x x (1a)

y = C(t)x, (1b)

where x(t) is an 1n× state vector, u(t) an 1× control vector,
and y(t) an 1m× output vector; A(t), B(t) and C(t) are,
respectively, n n× , n× and m n× time-varying matrices, and

()o ot =x x is the initial condition. Using the method of
variation of parameters, the solution of (1) can be expressed as

() (,) () (,) () ()
o

t

A o o At
t t t t t dτ τ τ τ= + ∫x Φ x Φ B u , (2a)

y(t) = C(t)x(t) (2b)

* loh@oakland.edu and cheok@oakland.edu.

where (,)A ot tΦ denotes the n× n state transition matrix
associated with A(t), and satisfies

(,) () (,), (,)A o A o A o o nt t t t t t t= =Φ A Φ Φ I

nI denotes the n n× unit matrix. (3)

The state transition matrix (,)A t τΦ is related to the
fundamental matrix ()A tX by

1(,) () ()A A At tτ τ−=Φ X X , (4)

where the fundamental matrix

()
() e

t

to
d

A t
τ τ∫=

A
X (5)

 solves the n× n matrix differential equation

0() () (), ()A A A ot t t t= =X A X X X . (6)

Further, the matrix exponential in (5) is defined by the power

series ()
0

1 ()
! o

kt

t
k

d
k

τ τ
∞

=
∑ ∫ A , thereby (5) yields, in general, a

solution of the form

() ()
0

1() exp () ()
!o o

kt t

A t t
k

t d d
k

τ τ τ τ
∞

=

= = ∑∫ ∫X A A . (7)

However, if () 1

()
o

mt

t
dτ τ

+

=∫ A 0 for some finite m <∞ , then (7)

becomes a finite-sum solution given by [18]

()1() () ()
!o o

mt t

A n t t
t d d

m
τ τ τ τ= + + +∫ ∫X I A A . (8)

It is well known that determining the matrix exponential given
by (5) is a difficult task, even for constant matrix A [13]. Note
also that ()A tX is nonsingular for all t, but may be nonunique;
however, the state transition matrix given by

1(,) () ()A o A A ot t t t−=Φ X X is unique for all ot and t.

mailto:loh@oakland.edu

IJCA, Vol. 29, No. 2, June 2022 67

2 Facts about LTV Systems

Consider an LTV system described by the homogenous
ordinary differential equation (ODE)

()t=x A x , ()o ot =x x . (9)

The following are important facts about the fundamental
matrix ()A tX and state transition matrix (,)A ot tΦ associated
with A(t):

F1: Sufficient Conditions for the Existence of
Fundamental and State Transition Matrices

The conditions are summarized in Table 1 ([2, 7, 9, 12, 14-
16]).

Table 1: Sufficient conditions for the existence of analytical
solutions of ()A tX and (,)A ot tΦ

(i) ()τA has piecewise continuous elements { }()i ja τ for
 all i, j and [,]ot tτ ∈ ;

(ii) ()tA commutes with its integral ()
o

t

t
dτ τ∫ A ,

i.e., () ()() () () ()
o o

t t

t t
t d d tτ τ τ τ=∫ ∫A A A A ;

(iii) A(t)A(s)=A(s)A(t) for all t and s;
(iv) 1 2 2 1() () () () ;

o o o o

t t t t

t t t t
d s ds s ds dτ τ τ τ=∫ ∫ ∫ ∫A A A A

(v) () ()t tα=A A , where ()tα is a scalar function and A is
a constant matrix;

(vi)
1

() () , where ()
m

i i i
i

t t tα α
=

= ∑A A are scalar functions,

and Ai are constant matrices such that AiAj=AjAi, i.e., Ai
and Aj commute for all {i, j}={1, 2, , m };

(vii) A(t) can be diagonalized as 1() () () ()t t t t−=D T A T , where
()1() (), , ()nt diag t tλ λ=D and { }1(), , ()nt tλ λ denote the

eigenvalues of A(t). ()tT is the similarity transformation
matrix.

F2: Properties of Diagonal, Upper and Lower
Triangular Matrices

A general upper triangular matrix U(t) and a lower triangular
matrix L(t) have the forms, respectively,

11 12 1

22 2

() () ()
0 () ()

()

0 0 ()

n

n

nn

a t a t a t
a t a t

t

a t

=U

 and

11

21 22

1 2

() 0 0
() () 0

()

() () ()n n nn

a t
a t a t

t

a t a t a t

=L

 (10)

where { }ija are the elements. Their properties help find the
corresponding fundamental and state transition matrices X(t)
and (, 0)tΦ :

Properties of upper diagonal matrix U and lower diagonal
matrix L:

• T =U U and T =L L , where (.)T denotes the transpose of
(.);

• The product of two upper triangular or lower triangular
matrices is, respectively, an upper triangular or lower
triangular matrix, i.e., 1 2 =U U U and 2 =1L L L ;

• A diagonal matrix D(t) is invertible if and only if all its
diagonal elements are nonzero;

• Diagonal matrices D(t) always commute, i.e.,
D(t)D(s)=D(s)D(t);

• Upper and lower triangular matrices with identical
diagonal elements are commutative; furthermore, if all
their diagonal elements are zeros, they become nilpotent
matrices. In addition, the eigenvalues of upper and lower
triangular matrices are equal to their diagonal elements.

• The eigenvalues of an n n× time-varying matrix A(t) can
be determined by using the conventional characteristic
equation, i.e., det[() ()] 0nt tλ∆ = − =I A [15].

F3: Method of Superposition Principle (MSP)

An n n× analytical solution X(t) for the homogenous LTV
system described by ODE (6) can be constructed by picking n
linearly independent initial conditions [1-3]. The method is
summarized as follows:

Set n normalized independent initial condition (IC) as:

1

1
0

() ,

0

ot

 =

x

 2

0
1

()

0

ot

 =

x

, ,

0
0

()

1

n
ot

 =

x

. (11)

Let { }(), 1, , i t i n=x be the solution of ()t=x A x based
on (10), i.e., ()i tx is solved uniquely one column at a time for
each initial condition ()i

otx . This construction is based on the
principle of superposition of linear systems, and is a method of
superposition principle (MSP) with normalized ICs. The
resulting n× n nonsingular matrix, denoted by ()Normalized tX , is
given by

68 IJCA, Vol.29, No. 2, June 2022

1() () ()n
Normalized t t t = X x x . (12)

It follows from (12) that the normalized fundamental matrix
()Normalized tX satisfies

1 1() () () () () ()
() ().

n n
Normalized

Normalized

t t t t t t
t t

 = =
=

X x x A x x
A X

 (13)

The simple initial condition (10) is a convenient choice to
determine ()Normalized tX . Note that it is also possible to choose

any set of initial conditions { }(), 1, 2, , i
ot i n=x , thereby

obtaining a different ()tX , as long as { }(), 1, 2, , i
ot i n=x

are linearly independent vectors. Therefore, the non-
uniqueness of ()Normalized tX and ()tX provides flexibility for
analyzing LTV systems; however, the state transition matrix

(,)ot tΦ is unique and is given by (4).

Remark 1: The method of superposition principle (MSP)
hinges on A(t) being an upper or lower triangular matrix [6],

so that the analytical solution of each ODE
1

()
n

i i j j
j

x a t x
=

= ∑

for all 1, 2, ...,i n= and 1, 2, ...,j n= can be determined
successively. The method is particularly attractive for manual
calculations of X(t) and (,)ot tΦ for low dimensional systems,
such as n = 2 and n = 3. ■

F4: Matrix Exponentials and Commutativity of
Constant and Time-Varying Matrices

Given two square matrices A and B, it follows, in general,
that [5, 7]

t te e≠A AB B , (14a)

t t te e e e≠A B Bt A , (14b)

()t te e e +≠A B A B t . (14c)

Equality will hold if and only if A and B commute, i.e.,
AB=BA. Further, if AB=BA, then t t t t t Bte e e e e += =A B B A A ⇒

t t t te e + −=A A B B . In addition, if Y is invertible, then
1 1e e
− −=YXY XY Y [11].

F5: Separation Principle for LTI and LTV Systems

2.1 LTI Systems

Consider the LTI system

x = Ax+Bu, x(0)=xo, (15a)

y = Cx, (15b)

where A, B and C are constant matrices of compatible
dimensions. It follows that the pair [A, B] is controllable if and
only if the pair [AT, BT] is observable, which is the well-known
property of duality for control and estimation.

The feedback control u is assumed to be given by

u= −K x̂ , (16)

where K is the feedback gain matrix and x̂ is an estimate of x
generated by an observer.

Next, an observer for (17) can be constructed as

()ˆ ˆ ˆ+ −x = Ax + Bu H y Cx

(17)
 = () ˆ− − x + HyA BK HC ,

where ˆ= −u Kx given by (18), and H is the observer gain
matrix.

Define the estimation error as

ˆ= −e x x (⇒ ˆ= +x x e), (18)

which yields

ˆ−e = x x . (19)

Further, (19) can be expressed as

() ()[]ˆ− ++ −e = x + Bu HCxAx Bu A HC

 = (A-HC)e. (20)

Also using (18), (20) can be expressed as

()= = +−x Ax + Bu x BKeA BK . (21)

Combing (20) and (21), we obtain the augmented systems

−
= −

x A BK BK x
e 0 A HC e

x
F

e
 , (22)

which yields the characteristic equation

∆ =det(()Fλ −I =det ()(λ −I A - BK det ()(λ −I A - BK , (23)

whereby

() ()λ λ− −A BK A HC , (24)

where (.)λ denotes the eigenvalues of (.). This property is the
well-known Separation Principle for LTI systems [4, 11].

IJCA, Vol. 29, No. 2, June 2022 69

Further, (22) can be expressed in the { }ˆx, x coordinates as

,
ˆˆ

 −
= + − −

x A BK BK x 0
y

0 A BK HC x Hx

 (25)

which is the closed-loop feedback control system and observer.
Computer simulation of (25) allows responses x(t) and ˆ ()tx

to be compared. If the responses x(t) and ˆ ()tx are not
satisfactory, for instance, ˆ ()tx does not converge to x(t)
quickly and smoothly, then the gain matrices K(t) and H(t)
may be redesigned.

2.2 LTV Systems

Consider the LTV System

x = A(t)x + B(t)u, x(0)=xo, (26a)

 y = C(t)x, (26b)

where A(t), B(t) and C(t) are time-varying matrices of
compatible dimensions. Following the formulation in Section I
above, we assume that the feedback control u(t) is given by

ˆ()t= −u K x , (27)

where K(t) is the time-varying feedback gain matrix and x̂ is
an estimate of x generated by an observer. Recall that, for LTI
systems, the pair [A, B] is controllable if and only if the pair
[AT, BT] is observable [2, Theorem 6.5, Theorem of Duality].
However, for LTV systems, it follows that [A(t), B(t)] is
controllable if and only if (), ()T Tt t − A B is observable (see
[2], Problem 6.22 and the Solution Manual for the proof).

An observer for (26) and (27) results in

 x̂

[] ˆ ˆ ˆ() , () .() () () () () o ot tt t t t t= + =− − x H y x xA B K H C (28)

Define the estimation error as

e = x- x̂ , (29)

which yields, with (26) and (28),

 ˆ= −e x x

 [] .() () (() et t t= −A H C (30)

Combing (26) and (30), we obtain the augmented systems

() () () () ()
() () ()

t t t t t
t t t

−
= −

x A B K B K x
e 0 A H C e

, (31)

The characteristic equation of (31) is given by

∆ =det(()() ()t tλ −I G =det ()() ()clt tλ −I A det ()() ()ot tλ −I A ,
 (32)

and yields the Separation Principle for LTV systems.
Equation (31) can also be expressed in the { }ˆx, x -

coordinates as

() () ()
.

ˆ) () () () () ()ˆ
t t t

t t t t t t
 −

= + − −

x A B K x 0
y

0 A B K H C x Hx

 (33)

Similar to (25) for LTI systems, (33) is needed for
implementing LTV closed-loop feedback control systems and
observers. Simulation responses x(t) and ˆ ()tx of (33) can be
used to adjust the gain matrices K(t) and H(t) to improve the
performance of x(t) and ˆ ()tx .

A block diagram for the LTV feedback control system and
LTV observer is shown in Figure 1.

F6:Controllability and Observability of LTV Systems

Consider the LTV system described by (1), repeated here for
ease of reference:

[]() () (), () , ,,o o ot t t t t a b= + = ∈x A x B u x x (1a)

 y = C(t)x. (1b)

We have the following sufficient conditions for the
controllability and observability of LTV systems.

Theorem 1: Controllability of LTV systems (2, Th 6.12; 6,
[12], Th 2.5; 16)

Let A(t) and B(t) be (n-1) times continuously differentiable.
Then the pair [A(t), B(t)] is controllable at to if there exists a
finite t1> to such that

rank[M(t)] = n, (34)

where

M(t) = []1 1() () ()o nt t t−M M M , (35a)

 Mo(t) = B(t), (35b)

70 IJCA, Vol.29, No. 2, June 2022

 Mm+1(t) = - A(t)Mm(t)+ ()m tM , (35c)

for m = 0, 1, …, n-1.

For LTI systems, (35) yields

2 3 1n−= − − M B AB A B A B A B , (36)

which has the same rank as the standard controllability theorem
of the pair [A, B] given by

2 3 1n−= M B AB A B A B A B , (37)

i.e., the alternate minus sign in (36) do not affect its rank and
rank() rank()=M M .

Theorem 2: Observability of LTV systems [2, Theorem
6.012]

Let A(t) and C(t) be (n-1) times continuously differentiable.
Then the pair [A(t), C(t)] is observable at to if there exists a
finite t1> to such that

rank[N(t)] = n, (38)

where

N(t) = 1

1

()
()

()

o

n

t
t

t−

N
N

N

, (39a)

No(t) = C(t), (39b)

Nm+1(t) = Nm(t)A(t) + ()tN , (39c)

for m = 0, 1, …, n-1.

Theorem 3: Relationship between Controllability and
Observability of LTV systems [2]

The pair [A(t), B(t)] is controllable at to if and only if [-
AT(t), BT(t)] is observable at to .

Proof: The proof can be found in [2], Solution Manual for
Problem 6.22.

3 Analytical Solutions and Simulations of LTV Systems,
and Design of LTV Feedback Control Systems and LTV
Observers

The analytical solutions of the fundamental and state
transition matrices of LTV systems and the design of feedback
control and observers will be investigated in this section.
Matlab solutions and simulations will be given as well.

Example 1: Second-order LTV system [6, 17]

Consider the LTV system:

()
2 5

2

6 3
() ,

0 3 o o
t t

t t
t

 −
= = = −

x A x x x x , (1-1)

where A(t) is an upper triangular matrix. The primary
objectives of this example are:

(1a): Solving for x(t), the fundamental matrix X(t), and the
state transition matrix (, 0)tΦ ;

(1b): Simulating the responses of x(t) in Matlab with
normalized ICs: 1 (0) 1x = and 2 (0) 1x = .

Solution:

(1a): First, we check the matrix commutativity properties of
A(t):

1 2 2 1() () () () and () () () (),t t t t t t t t≠ ≠A A A A A Ψ Ψ A (1-2)

IJCA, Vol. 29, No. 2, June 2022 71

where ()tΨ denotes the integral of A(t), i.e.,

() ()
o

t

t
t dτ τ= ∫Ψ A . (1-3)

Since both conditions are not met, then ()() exp
o

t

t

dt τ

≠

∫AX

and () () ()t t t≠X A X . The problem has been investigated in [6]
and [17]. The solutions of Wu and Jain are listed below,
respectively:

(i) Wu: ()
3 3 3 3

3

2 2 3

2

)
,0 , (0,0)

0

t t t t

Wu Wut

e e e t e
t

e

− − − −

−

 − +
= =

Φ Φ I ,

(1-4)

⇒
3 3 3 3

3

2 2 3
1 21

2 2

(0) () (0),()
()

() (0).

t t t t
Wu

Wu t
Wu

e x e e t e xx t
t

x t e x

− − − −

−

 + − + = =

x

(1-5)

(ii) Jain:

()
()3 3 3

3

3
2 2

2, 0 , (0, 0) ,2
0

t t t

Jain Jain
t

te e e
t

e

− − −

−

− = =

Φ Φ I (1-6)

⇒
()3 3 3

3

3
2 2

1 21

2
2

(0) (0),()
() 2

()
(0),

t t t
Jain

Jain
Jain t

te x e e xx t
t

x t
e x

− − −

−

+ − = =

x

(1-7)

where the state transition matrices () (), 0 , 0Wu Jaint t≠Φ Φ . It
follows that

(, 0)
() (, 0)Wu

Wu

t
t t

t
∂

=
∂

Φ
A Φ ⇒ Wu's solution is correct,

(1-8)

(,0) () (,0)Jain
Jain

t t t
t

∂
≠

∂
Φ A Φ ⇒ Jain's solution is incorrect.

(1-9)

If we check more closely, it follows from (1-5) and (1-7) that

2 2() ()WU Jainx t x t= , (1-10)

but the error between 1 ()Wux t and 1 ()Jainx t is given by

1 1 1() () ()Wu Jaine t x t x t= −

3 3
3 3

2
21 1 (0)

2 2
t tt te e x− −

= − + +
0→ as t →∞ .

(1-11)

Further, the error between (, 0)Wu tΦ and (, 0)Jain tΦ is given
by

()2 3 3 32 3 2
10
2() (, 0) (, 0)

0 0

t t t t

Wu Jain

e e t e et t t
− − − −

 − + + = − =

E Φ Φ

0→ as t →∞ . (1-12)

The Matlab program using Matlab's EXPM command that
yields (1-6) is listed below:

syms t

A = [-6*t^2 3*t^5; 0 -3*t^2];

M = int(A,t) = [-2*t^3, 1/2*t^6]
[0, -t^3];

Xmatlab= simplify(expm(M)) =

 = [exp(-2*t^3), -1/2*t^3*exp(-t^3)*(-1+exp(-t^3))]
 [0, exp(-t^3)],

which is identical to (1-6) and is incorrect.

(1b): The responses of the analytical solutions ()Wutx and
()Jaintx given by (1-5) and (1-7), respectively, are

plotted in Figure 2. For comparisons, simulations of
the time-varying ODE (1-1) using Matlab's ODE45
are also plotted. All the plots in Figure 2 agree with
the observations given by (1-10) and (1-11). Hence,
based on the matrix differential equations

(, 0)
() (, 0)Wu

Wu

t
t t

t
∂

=
∂

Φ
A Φ and

(,0) () (,0)Jain
Jain

t t t
t

∂
≠

∂
Φ A Φ given by (1-8) and (1-9),

the error equation given by (1-11), and all the
simulation results, we conclude that Wu's method
yields the correct solution to ()t=x A x and Jain’s
solutions are incorrect. Recall that Matlab will yield
correct solutions if A(t) given in (1-1) is a
commutative matrix.

Example 2: Design of Feedback Control for LTV System
and LTV observer with Prescribed Properties

Consider the LTV system described by [6]

0 1 exp() 0
() ()

1 exp() 1
t

t t u u
t

− − −
= + = + − −

x A x B x , (2-1a)

72 IJCA, Vol. 29, No. 2, June 2022

Figure 2: Responses of ()Wu tx given by (1-4) and ()Jain tx
given by (1-6) with 1 (0) 1x = and 2 (0) 1x = , and the
error 1 ()e t given by (1-11). All the solutions decay
to zero as t →∞ .

y=C(t)x=[0 1]x=x2. (2-1b)

Do the following:

(2a): Design a feedback control system for (2-1) such that
the resulting closed-loop system matrix

() () () ()cl t t t t= −A A B K (2-2)

is triangular, commutative, and nilpotent, where K(t) is the
feedback gain matrix. Determine the analytical solutions for
the fundamental matrix ()cl tX and state transition matrix

(, 0)cl tΦ associated with Acl(t) given by (2-2).

(2b): Design an observer for (2-1) such that the observer
matrix

 () () () ()o t t t t= −A A H C (2-3)

is triangular, commutative, and nilpotent, where H(t) is the
observer gain matrix. Determine the analytical solutions for
the fundamental matrix ()o tX and state transition matrix

(, 0)o tΦ associated with Ao(t) given by (2-3).

(2c): Simulate and plot the responses of x(t) and ˆ ()tx .

Solution:

(2a) Design of LTV Control System

Solution:

Step 1: Check the controllability matrix of the pair [A(t),
B(t)] given by (36), Theorem 1. We obtain:

[]1() () ()ot t t=M M M

= () () () ()o o ot t t t − + M A M M = []() () ()t t t−B A B

=
0 1 exp()
1 exp()

t
t

+ −
 −

, (2-4a)

where

()o tM =B(t), (2-4b)

M1(t) = -A(t)*Mo(t) =
1 exp()

exp()
t

t
+ −

 −
. (2-4c)

The determinant det(M(t)) of M(t) is given by

det(M(t)) = -1 -exp(-t) 0≠ for all t, (2-5)

⇒ rank[M(t)] = 2 for all t ⇒ LTV system (2.1) is
controllable for all t.

Step 2: Design of feedback control system

Let a feedback control be given by

u= - K(t) x̂ , (2-6)

where K(t) =[k1(t) k2(t)] is a feedback gain matrix, and x̂ is
an estimate generated by an observer . Substituting (2-6) into
(2-1) yields the closed-loop control system

x = A(t)x-B(t)K(t) x̂ . (2-7)

Since [A(t), B(t)] is a controllable pair, a suitable control gain
matrix K(t) exists such that Acl(t) has desirable properties,
specifically, Acl(t) being triangular and commutative.

Step 3: Determine the control gain matrix K(t) in (2-6) and
(2-7). We have

Acl(t)=A(t)-B(t)K(t)
1 2

0 1 exp()
1 () exp() ()

t
k t t k t

− − −
= − − − −

. (2-8)

Setting k1(t) =1 and k2(t) = - exp(-t) in (2-8) yields

IJCA, Vol. 29, No. 2, June 2022 73

Acl(t)=A(t)-B(t)K(t)=
0 1 exp()
0 0

t− − −

, (2-9)

which is a commutative and triangular matrix with zero
diagonal elements so that the design criteria are satisfied.

Step 4: Determination of the fundamental matrix Xcl(t) and
transition matrix (, 0)cl tΦ .

Since Acl(t) is a triangular and commutative matrix, its
associated fundamental matrix Xcl(t) and state transition
matrix (, 0)cl tΦ can be determined readily as follows: We
have

0 exp()
()

0 0
t

clo

t t
dτ τ

− + −
=

∫ A , ()2

()
t

clo
dτ τ =∫ 0A . (2-10)

Since ()2

()
t

clo
dτ τ =∫ 0A , ()cl tX is given by

()
() e

t
clo

d

cl t
τ τ∫=

A
X ()

0

1
()

!

kt

clok
d

k
τ τ

∞

=

= ∑ ∫ A 2 () ,
t

clo
dτ τ= + ∫I A

 (2-11)

which yields a finite-sum solution

2() ()
t

c l clo
t dτ τ= + ∫X I A

1 e
0 1

tt − − +
=

,
1 1

(0)
0 1cl

=

X .

 (2-12)

Using (2-12), the state transition matrix (, 0)cl tΦ is obtained as

1(,0) () (0)cl cl clt t −=Φ X X =
1 1
0 1

tt e− − − +

, 2(,0)cl t =Φ I .

(2-13)

Equations (2-12) and (2-13) satisfy, respectively, the matrix
differential equations:

() () (), (0)cl cl cl clt t t=X A X X , (2-14)

2(,0) () (,0), (0,0)cl cl cl clt t t= =Φ A Φ Φ I , (2-15)

which confirm that ()cl tX and (, 0)cl tΦ solve (2-14) and (2-
15), respectively.

(2c): Design of LTV Observer with Prescribed
Properties

Step 1: Check the observability matrix of the pair [A(t),
C(t)] given by (40), Theorem 2. We obtain:

N(t) =
1

() 0 1
() 1 exp()

o t
t t

= − −

N
N

, (2-16)

The determinant det(N(t)) of N(t) is given by

det(N(t)) = -1, (2-17)

⇒ rank[N(t)] = 2 for all t ⇒ LTV system (2.1) is
observable for all t.

Step 2: An observer for (2-1) has been designed in [8, Eq.
(3.215)] and is given by,

ˆ ˆ ˆ() ()[()] ()t t t t= + − +x A x H y C x B u

(2-18)

where the observer gain matrix H(t) is given by

1

2

()
()

()
h t

t
h t

=

H . (2-19)

Substituting (2-19) into (2-18) yields

1

2

0 1 ()ˆ ˆ () ()
1 ()

t

t

e h t
t t

e h t

−

−

 − − −
= + + − −

x x H y B u . (2-20)

In [6], the observer gain matrix H(t) was chosen as

1

2 1

() 1 e
()

() e

t
o

t

h t m
t

h t m

−

−

 − −
= = −

H , (2-21)

where mo and m1 are constants. Substituting (2-21) into (2-20)
yields an LTI observer

1

0
ˆ ˆ ˆ() () () ()

1
o

o

m
t t t t

m
−

= + + + + −
x x H y B u A x H y B u .

(2-22)

where oA is a constant matrix. The eigenvalues of oA are

given by
2

1 4
2

om m m
λ

− ± +
= which can be used to guide

the choice of mo and m1 for stability analysis.
Simulation studies of the LTV closed-loop control and

observer can be obtained by using (2-1) and (2-22), repeated
for ease of reference,

0 1 exp() 0
() ()

1 exp() 1
t

t t u u
t

− − −
= + = + − −

x A x B x ,

74 IJCA, Vol. 29, No. 2, June 2022

y=C(t)x=[0 1]x=x2, x(0))=xo; (2-1)

1

0
ˆ ˆ () ()

1
om

t t
m

−
= + + −

x x H y B u , ˆ ˆ(0) o=x x (2-22)

where

u= - K(t) x̂ = [] ˆ1 exp(t− − x . (2-23)

The responses of x(t) and ˆ ()tx are as shown in Figure 3,
where x(t) converges to ˆ ()tx quickly and smoothly.

Figure 3: Responses of the estimate ˆ ()tx given by (2-22)

converges to x(t) given by (2-1) quickly and
smoothly for mo=1 and m1=1. The initial conditions
were both chosen as x(0)) = ˆ(0) =x [2 1]T

Example 3: Design of Feedback Control for LTV System
and LTV observer with prescribed Properties

Consider a 4th-order LTV system described by the
homogenous equation

3

2

0 0 0 0
0 0 2 3

()
1 0 0 0

3 0 0 0

t t
t

t

 = =

x A x x . (3-1)

It is an LTV system investigated in [10] that has interesting
properties, for example,

A(t)A(s) ≠ A(s)A(t), (3-2a)

but

() () () () .() , ()
t t t

o o o
t d d t t dτ τ τ τ τ τ = ⇒ = ∫ ∫ ∫A A A A 0A A

(3-2b)

(3a): Design a feedback control system for (3-1) such that
the resulting closed-loop system matrix

() () () ()cl t t t t= −A A B K (3-3)

is triangular and commutative, where K(t)= []1 2 3 4k k k k ,
is the feedback gain matrix. Determine K(t) and the analytical
solutions for the fundamental matrix ()cl tX and state transition
matrix (, 0)cl tΦ associated with Acl(t) given by (3-3).

(3b): Design an observer for (3-1) such that the observer
matrix

Ao(t) = A(t) - H(t)C(t) (3-4)

is triangular and commutative, where
H(t)= []1 2 3 4

Th h h h is the observer gain matrix.
Determine H(t) and the analytical solutions for the fundamental
matrix ()o tX and state transition matrix (, 0)o tΦ associated
with Ao(t) given by (3-4).

Solutions:

(3a): Design of LTV feedback control system with
prescribed properties

Since (3-1) is a system with no input, we need to modify it
for feedback control analysis as

() () ,t t= +x A x B u (3-5)

where B(t) is to be chosen such that the rows of B(t)K(t) can
modify the rows of A(t) to mach the design criteria, in
particular Acl(t) being a triangular and commutative matrix.

Design algorithm:

Step 1: Examining the structure of A(t), it follows that an
upper triangular and commutative matrix Acl(t) can be obtained
by replacing the terms 32t and 3t in the second row of A(t) by
an 0 (zero). This suggests that B(t) should be chosen with a
nonzero row and has the form

0
1

()
0
0

t

 =

B , (3-6)

IJCA, Vol. 29, No. 2, June 2022 75

Substituting (3-6) into (3-3) yields

3
1 2 3 4

2

0 0 0 0
2 3

() () () ()
1 0 0 0

3* 0 0 0

cl

k k t k t k
t t t t

t

 − − − − = − =

A A B K .

(3-7)

Setting k1=0, k2=0, k3= 32t and k4=3t into (3-7) yields

2

0 0 0 0
0 0 0 0

() () () ()
1 0 0 0

3* 0 0 0

cl t t t t

t

 = − =

A A B K , (3-8)

which is a lower triangular and commutative matrix. It is
emphasize that Acl(t) given by (3-8) was obtained without
regard to whether the pair [A(t), B(t] is controllable or
uncontrollable.

Step 2: Check the controllability matrix M(t) of the pair
[A(t), B(t)] given by (36), Theorem 1 with B(t) given by (3-6).
We have:

M(t) []1 2 3() () () ()o t t t t= M M M M , (3-9a)

where

Mo(t)=B(t), (3-9b)

M1(t)= () () ()o ot t t− +A M M =

0
0
0
0

, 2 ()tM =

0
0
0
0

,

3 22() () () ()M t t t t= − +MA M =

0
0
0
0

. (3-9c)

which yields

M(t)=

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

. (3-9d)

The determinant det(M(t)) of M(t)) is given by

det(M(t))=0 ⇒ LTV system is uncontrollable. (3-10)

Hence, there exists no feedback gain matrix K(t) in (3-3) that
can change the structure of A(t) to that of Acl(t). However, the
method proposed in the paper has just accomplished the design
objective as shown by (3-8). On the other hand, given a
general A(t), the proposed method may fail.

Step 3: Determination of the fundamental matrix Xcl(t) and
transition matrix (, 0)cl tΦ .

Since Acl(t) given by (3-8) is a triangular and commutative
matrix, its associated fundamental matrix Xcl(t) and state
transition matrix (, 0)cl tΦ can be determined readily as follows.
We have

()
t

clo
dτ τ =∫ A

2

0 0 0 0
0 0 0 0

0 0 0
0 0 0

t
t

 and ()2

()
t

clo
dτ τ =∫ 0A . (3-11)

Since ()2

()
t

clo
dτ τ =∫ 0A , ()cl tX is given by

()
() e

t
clo

d

cl t
τ τ∫=

A
X ()

0

1
()

!

kt

clok
d

k
τ τ

∞

=

= ∑ ∫ A 4 () ,
t

clo
dτ τ= + ∫I A

 (3-12)

which yields the finite-sum solution

4() ()
t

c l clo
t dτ τ= + ∫X I A =X=

3

1 0 0 0
0 1 0 0

0 1 0
0 0 1

t
t

, 4(0)c l =X I .

 (3-13)

Using (3-13), the state transition matrix (, 0)cl tΦ is obtained as

1(, 0) () (0)cl cl clt t −=Φ X X =

3

1 0 0 0
0 1 0 0

0 1 0
0 0 1

t
t

, 4(, 0)cl t =Φ I .

(3-14)

Equations (3-13) and (3-14) satisfy, respectively, the matrix
differential equations:

() () (), (0)cl cl cl clt t t=X A X X , (3-15)

4(, 0) () (, 0), (0, 0)cl cl cl clt t t= =Φ A Φ Φ I , (3-16)

which confirm that ()cl tX and (, 0)cl tΦ solve (3-15) and (3-
16), respectively.

76 IJCA, Vol. 29, No. 2, June 2022

(3b): Design of LTV Observer with Prescribed Properties

Since (3-1) is a system with no output, we need to modify it
for observer design as

() , ()t t= =x A x y C x , (3-17)

where C(t) is to be chosen such that H(t)C(t) satisfies the
design criteria. An LTV observer for (3-17) can be designed as

 ˆ ˆ ˆ() ()[() ()]t t t C t= + −x A x H y H x

ˆ ˆ[() () ()] () () ()ot t t t t t= − + = +A H C x H y A x H y , (3-18)

where H(t) is the observer gain matrix given by

1

2

3

4

()
()

()
()
()

h t
h t

t
h t
h t

 =

H . (3-19)

Design Algorithm

Step 1: Once again, examining the structure of A(t), it
follows that a lower triangular and commutative matrix Ao(t)
can be obtained by replacing the third and fourth elements in
the first column of A(t). This suggests that C(t) can be chosen
as

C(t)=[1 0 0 0]. (3-20)

Substituting (3-20) into (3-18) yields

Ao(t)=

1
3

2

3
2

4

0 0 0
0 2 3

1 0 0 0
3 () 0 0 0

h
h t t
h

t h t

−
 −
 −

−

. (3-21)

Setting h1=0, h2=0, h3=1 and h4= 23t yields

Ao(t)=
3

0 0 0 0
0 0 2 3
0 0 0 0
0 0 0 0

t t

, (3-22)

which is an upper triangular and commutative matrix.

Step 2: Check the observability matrix N(t) of the pair [A(t),
C(t)] given by (40), Theorem 2, for n=4. We have:

N(t) []1 2 3() () () ()o t t t N t= N N N , (3-23a)

where

No(t)=C(t), (3-23b)

N1(t)= () () ()o ot t t+N A N = 0 , 2 1 1() () () ()t t t t= +N N A N =0,

 3 2 2() () ()t t t= +N N A N =0, (3-23c)

which yields

N(t)=

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

. (3-23d)

The determinant det(N(t)) of N(t)) is given by

det(N(t))=0 ⇒ LTV system is uncontrollable. (3-24)

Hence, there exists no observer gain H(t) that can change the
structure of A(t) to that of Acl(t). But the method proposed in
this paper has just accomplished the design objective as shown
by (3-22). On the other hand, given a general A(t), the
proposed method may not work.

Step 3: Determination of the fundamental matrix Xo(t) and
transition matrix (, 0)o tΦ .

Since Ao(t) given by (3-22) is a triangular and commutative
matrix, its associated fundamental matrix Xo(t) and state
transition matrix (, 0)o tΦ can be determined readily as follows:
We have

()
t

oo
dτ τ =∫ A

4 2

0 0 0 0
0 0 0.5 1.5
0 0 0 0
0 0 0 0

t t

and ()2

()
t

oo
dτ τ =∫ 0A .

(3-25)

Since ()2

()
t

oo
dτ τ =∫ 0A , ()o tX is given by

()
() e

t
oo

d

o t
τ τ∫=

A
X ()

0

1
()

!

kt

ook
d

k
τ τ

∞

=

= ∑ ∫ A 4 () ,
t

oo
dτ τ= + ∫I A (3-26)

which yields a finite-sum solution

4() ()
t

c l clo
t dτ τ= + ∫X I A =X=

4 2

1 0 0 0
0 1 0.5 1.5
0 0 1 0
0 0 0 1

t t

, 4(0)c l =X I .

 (3-27)

IJCA, Vol. 29, No. 2, June 2022 77

Using (3-26), the state transition matrix (, 0)o tΦ is obtained as

1(, 0) () (0)o o ot t −=Φ X X =
4 2

1 0 0 0
0 1 0.5 1.5
0 0 1 0
0 0 0 1

t t

, 4(, 0)o t =Φ I .

 (3-28)

Equations (3-27) and (3-14) satisfy, respectively, the matrix
differential equations:

() () (), (0)o o o ot t t=X A X X , (3-29)

4(, 0) () (, 0), (0, 0)o o o ot t t= =Φ A Φ Φ I , (3-30)

which confirm that 0 ()tX and (, 0)o tΦ solve (3-29) and (3-30),
respectively.

4 Conclusions

Determination of the analytical solutions for the fundamental
and state transition matrices associated with linear time-varying
(LTV) systems of the form given by (5), which is a matrix
exponential, was investigated. It is well known that
determining a matrix exponential is a difficult task. The
investigation consisted of two types of LTV systems, namely,
feedback control systems and observers. For the design of
LTV control systems, one of the main objectives was to require
the closed-loop system matrices to have specific structures,
specifically, being upper or lower triangular matrices with
identical elements on their main diagonal. The same objective
was imposed on the observer matrices. Upper and lower
triangular matrices have many desirable properties, such as
they are commutative as wasstated in fact F.2 in the paper. The
commutativity of a matrix will ease the determination of its
fundamental and state transition matrices. Examples were
given to demonstrate the analysis and design. Simulations and
Matlab solutions using its command EXPM were provided as
well. Future research will address disturbance cancellation
control of LTV systems and the design of unknown input LTV
observers.

References

[1] B. Bamieh, “Lecture 5: Continuous-Time Linear State-
Space Models,” University of California, Fall 1999.

[2] C. T. Chen, Linear Systems and Design, 4th Ed., New
York: Oxford University Press, 2013.

[3] Mohammed Dahleh, Munther Dahleh, and G. Verghese,
“Chapter 11, Lectures on Dynamic Systems and
Control,” MIT6_241JS11, https://www.studocu.com/

enus/document/university-of-massachusetts-amherst/
feedback-control-systems/mit6-241js11-chap26-hand
outs/8198958, 2013/2014.

[4] F. G. Franklin, J. D. Powell, and A. Emami-Naeini,
Feedback Control of Dynamic Systems, Fourth Edition,
New Jersey: Prentice Hall, 2002.

[5] Grant B. Gustafson, “Systems of Differential Equations,
Chapter 11,” pp. 740-821, https://www.math.utah.edu/
~gustafso/2250systems-de.pdf, Jan 17, 2017.

[6] Vanita Jain and B. K. Lande, “Computation of the
Transition Matrix for General Linear-Varying Systems,”
International Journal of Engineering & Technology
(IJERT), 1(6):1-10, August 2012.

[7] T. Kailath, Linear Systems, New Jersey: Prentice-Hall,
1980.

[8] Edward W. Kamen, “Fundamentals of Linear Time-
Varying Systems,” The Control Systems Handbook, 2nd

Edition, Chapter 3, pp. 3-1 to 3-33, December 2010.
[9] T. Kamizawa, “On Functionally Commutative Quantum

Systems,” Faculty of Physics, Astronomy and
Informatics, Nicolaus Copernicus University, Toru'n,
Poland, 2018.

[10] J. F. P. Martin, “Some Results on Matrices which
Commute with Their Derivatives,” SIAM J. Affl. Math,
15(8):1171-1183, September 1967.

[11] Matrix Calculus, Wikipedia. , https://en.wikipedia.
org/wiki/Matarix_calculus, Revised May 2022

[12] Thomas Meurer, “Chapter 2, Analysis and Control of
Linear Time-Varying Systems,” https://www.control. tf.
uni-kiel.de/en/teaching/summer-term/nonlinear-control-
systems/nonlinear-control-systems-etit-5013-01.

[13] Cleve Moler and Charles Van Loan, “Nineteen Dubious
Ways to Compute the Exponential of a Matrix, Twenty-
Five Years Later,” SIAM Review, Society for Industrial
and Applied Mathematics, 45(1):3-49, March 2003.

[14] A. F. Taha, “Computation of State Transition Matrix,
Module 04 - Linear Time-Varying Systems,” https://
ceid.utsa.edu/ataha/wp-content/upload/sites/38/2017/07/
EE5143_Module4.pdf, September 26, 2017.

[15] J. M. Wang, “Explicit Solution and Stability of Linear
Time-varying Differential State Space Systems,”
International Journal of Control, Automation and
Systems 15(4):1553-1560, 2017.

[16] D. M. Wiberg, Theory and Problems of State Space and
Linear Systems, New York, McGraw-Hill, Inc., 1971.

[17] M. Y. Wu, “A New Method of Computing the State
Transition Matrix of Linear Time-Varying Systems,”
Proceedings of the IEEE International Symposium on
Circuits and Systems, San Francisco, pp. 269-272, 1974.

[18] J. Zhu and C. H. Morales, “On Linear Ordinary
Differential Equations with Functionally Commutative
Coefficient Matrices,” Linear Algebra and Its
Applications, 170:81-105, 1992.

https://www.studocu.com/%20enus/document/university-of-massachusetts-amherst/%20%0bfeedback-control-systems/mit6-241js11-chap26-hand%20outs/8198958
https://www.studocu.com/%20enus/document/university-of-massachusetts-amherst/%20%0bfeedback-control-systems/mit6-241js11-chap26-hand%20outs/8198958
https://www.math.utah.edu/%20%7Egustafso/2250systems-de.pdf
https://www.math.utah.edu/%20%7Egustafso/2250systems-de.pdf

78 IJCA, Vol. 29, No. 2, June 2022

Robert N. K. Loh received his PhD degree in Electrical
Engineering from the University of Waterloo, Canada, in 1968.
He has taught at various universities since graduation, and has
won three endowed chair professorships on two continents -
North America and Asia. He was a Senior Vice President of
Engineering of an international corporation in Hong Kong, and
was an editor and associated editor of several international
technical journals. He retired in 2016, but is still very active in
his research in control engineering, estimation theory
(including stochastic processes), and systems engineering.

Ka C. Cheok is a Professor of
Engineering and John Dodge
Chair at the Department of
Electrical & Computer
Engineering, Oakland University,
Rochester, MI. He has completed
several successful R&D
collaborations in intelligent
systems and autonomous robotics
for over the years. They include

fuzzy logic-based highway and city street lane centering
systems; ultra-wideband tracking of omnidirectional mobile
robots & assets in GPS denied areas; mine-detection robot that
sweeps for anti-personnel ordinance, and automated breast
cancer diagnostic tester that integrates IR thermography and
AI. He has published over 170 technical journal and
conference papers, and nine US patents. Dr. Cheok is a co-
founder and co-organizer of the annual Intelligent Ground
Vehicle Competition, since1993. He served a Consultant
Member on the prestigious US Army Science Board.

IJCA, Vol. 29, No. 2, June 2022 79

Logical Modeling of Adiabatic Logic Circuits using VHDL with Examples

Lee A. Belfore II *

Old Dominion University, Norfolk, Virginia, 23529, USA

Abstract

The underlying nature of adiabatic circuits is most accurately
characterized at the circuit level as it is for traditional
technologies. However, in order to scale system designs for
adiabatic logic technologies, modeling of adiabatic circuits
at the logic level is necessary. Logic level models of
adiabatic logic circuits can facilitate the design, development,
and verification of large scale digital systems that may be
infeasible using circuit simulators. Adiabatic logic circuits can
be powered with a four stage power clock consisting of idle,
charge, hold, and recover stages that provides for adiabatic
charging and charge recovery to give adiabatic circuits their
low power operation. By both discretizing the temporal aspects
of the power clock and the logic values, a logical model of
adiabatic circuit operation is proposed. Using the expressive
capabilities of Very High Speed Integrated Circuit (VHSIC)
Hardware Description Language (VHDL), the salient aspects of
adiabatic circuit models can be captured. In this work, a VHDL
framework is defined for modeling adiabatic logic circuits &
systems and its use is demonstrated in several example adiabatic
logic circuits.

Key Words: Low power electronics; Digital circuits; Logical
Model; Digital simulation; VHDL.

1 Introduction

Adiabatic logic circuit technology offers lower power
consumption compared with CMOS technologies by energizing
circuits adiabatically and then adiabatically recovering stored
energy from the circuit for later reuse [3, 7, 8, 10]. The
efficiency and behavior is established by the circuit level
behaviors that are quantified in circuit simulations and measured
in actual circuits. Once the circuits are suitably characterized,
the overall operation can be described symbolically. This
description of their operation is the basis for logical models of
adiabatic circuits.

With current digital system design requirements and
modeling practices, it is impractical to rely solely on circuit
simulations to validate a design because the circuit simulations
require substantial computational resources. As a result, the

*Department of Electrical and Computer Engineering. Email:
LBelfore@odu.edu

design process employs conservative models with conservative
margins, substitutes vetted approximate models for high fidelity
models, and/or, limits circuit simulation to special cases
requiring circuit level fidelity. The fidelity is not reduced in
an arbitrary fashion, but rather aspects of the circuit operation
are modeled symbolically. Circuit level properties associated
with the symbolic representations can be included using a circuit
extraction step to improve the fidelity of the model. Such is the
case with circuit delays, for example.

Approaches for modeling adiabatic and partially adiabatic
circuits appear in the literature [14, 15]. In Varga et al., the
adiabatic pipeline is modeled using the IEEE std_logic type
for logic values and guarded blocks to manifest the timing of
the power clock [14]. The motivation is to model the pipeline
structure in anticipation of synthesis. Finally, approaches for
modeling in Verilog are developed [15] with the observation
that VHDL is similarly capable. The clear intent of these
approaches is to facilitate modeling larger scale models and
support synthesis based on the logical behavior of the models.

More generally in the literature, adiabatic circuit dynamics
can be modeled with VHDL by one of two methods. First,
VHDL libraries can be created with the specific capacity to
model analog signals [9]. In addition, the VHDL standard
has been extended to support mixed analog/digital modeling
in VHDL-AMS [1]. In both of these approaches, the circuit
is ultimately represented by a system of differential equations.
In these works, it would be necessary to develop libraries to
support adiabatic circuit models. The principle disadvantage in
these approaches is the significant simulation time necessary for
large circuits. During system development, it is more pragmatic
to focus on logical modeling, constrained by conservative
performance metrics, to facilitate iterative design. Once the
design approaches the final phase, then it may become necessary
to shift to higher fidelity circuit simulations.

In this work, an approach is introduced for modeling
adiabatic circuits. The model defines a multivalued logic value
definition consistent with adiabatic circuit operating modes.
The logic values facilitate developing adiabatic logic pipelines
and troubleshooting of logic circuits. Importantly, the model
preserves the dual rail nature of adiabatic signals.

This paper is organized into five sections including an
introduction, an overview of the operation of adiabatic circuits,
a presentation of adiabatic VHDL models, simulation results for

ISCA Copyright© 2022

80 IJCA, Vol. 29, No. 2, June 2022

several examples, and a summary.

2 Adiabatic Logic Circuits Operation

In this section, the basis for logical models of adiabatic
circuit operation is presented. The intention is to identify
modes of circuit operation that can be represented symbolically
rather than actual circuit level behaviors. The interested reader
can find the details of adiabatic circuit operation elsewhere
[2, 3, 7, 8, 10].

Adiabatic circuits are capable of low power operation by
providing the energy to the circuit adiabatically and then later
adiabatically retrieving the energy for subsequent reuse. Note
that adiabatic operation implies that no heat is dissipated during
circuit operation. Since the circuit operation is not ideally
adiabatic, some energy will be dissipated, but can be greatly
reduced compared to traditional CMOS technologies.

2.1 Power Clocks

Adiabatic circuit operation can be divided into four segments
reflecting the modes of circuit operation. The segments are
idle, charge, hold, & recover, or abbreviated by I, C, H, &
R. The nature of each segment captures an adiabatic circuit’s
mode of operation and is manifest by the nature of the power
source during the segment as a function of time. Repeating
the segments in the order presented enables adiabatic operation.
Since segments are repeated periodically, the circuit’s power
source is henceforth termed the power clock.

In more detail, the segment operation is described as follows.
In the idle mode, the circuit voltage source is 0V, the circuit is
unpowered, and thus consumes no power. In the charge mode,
the voltage supplied slowly increases, charging capacitive
elements in the circuit that when fully charged, enabling the
circuit to provide its designated function. A key aspect of the
charge mode is the “slow” increase in the voltage supplied.
By “trickle charging” the capacitive elements, the net power
consumed can be shown to be reduced [7]. In the limit where
the voltage increases over an indefinitely long time interval, the
circuit operates in a truly adiabatic fashion. In the hold mode,
the circuit is fully charged. With no current entering the circuit,
the circuit consumes no power. Finally, in the recover mode,
the circuit is discharged through its voltage source, returning its
charge for later reuse. Similar to the charge mode, the slow ramp
down of the voltage source retrieves the charge adiabatically.
An important observation is that, unlike traditional CMOS
circuits where such charge is resistively dissipated, the charge
is recovered through the voltage source for later reuse.

Further, to simplify the discussions, a trapezoidal clock
is assumed, although many adiabatic circuits operate using
sinusoidal or other periodic shapes that are more easily
generated. Figure 1 shows four power clock phases, shifted 90◦

with respect to one another.

φ1

φ2

φ3

φ4

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

C
I

 R

I
C

I

C

C C

C

C

C

I

II I

I

I

I II

I

H H H

HHH

H H H H

HHH

 R R

 R R R R

 R R R C

 R R RC C C C

Figure 1: Four power clock phases

2.2 Adiabatic Circuit Dynamic Behavior

Figure 2 gives a circuit level schematic for the simplest
adiabatic logic gate, the buffer-inverter, along with its
schematic symbol. High fidelity models of the buffer-inverter

 A

 F

Q
1

Q
2

Q
4

Q
3A

φ
i

 F A

A

φ
i

F

F

(a) Circuit (b) Schematic symbol

Figure 2: Buffer-inverter adiabatic logic circuit

unsurprisingly also require high fidelity models of transistors
modeled by nonlinear differential equations. Describing the
adiabatic circuits in terms of its logical modes of operation
requires several simplifying assumptions. First, transistors
operate as simple switches that are either open or closed
depending on the gate voltage. The circuit schematic includes
two types of transistors, NMOS (Q3 & Q4) and PMOS (Q1 &
Q2) making the fabrication of adiabatic logic circuits compatible
with traditional CMOS circuits. The transistor has three
terminals: gate, source, and drain. For NMOS transistors,
when a voltage across the gate and source, VGS, exceeds a
characteristic threshold voltage, the transistor turns on. PMOS
transistors operate similarly with polarities reversed. To
simplify interpreting the circuit models that follow, the NMOS
transistors are on when V NMOS

GS > 0V and the PMOS transistors
are on when V PMOS

GS < 0V . Second, when transistors are on, they
have a constant characteristic resistance Ron. Third, transistors
have zero leakage currents when off. Fourth, all parasitic
capacitances and resistances are ignored. Fifth and finally, only
the transistor’s gate capacitance is considered. The different
simplified modes of transistor operation are shown in Figure 3.
Applying the transistor models in Figure 3 to Figure 2(a)
for A='1', the different modes of operation are illustrated in

IJCA, Vol. 29, No. 2, June 2022 81

Vcc

S

G
D

S

G
D

Circuit Model Circuit Model
(a) NMOS on (b) NMOS off

Vcc

D

G
S

Vcc Vcc

D

G
S

Vcc

Circuit Model Circuit Model
(c) PMOS on (d) PMOS off

Figure 3: Simplified transistor operational modes

Figure 4. Note that CF and CF are the lumped capacitances for
the circuit fanout. More concretely observed from the figure is
the circuit charging and charge recovery in Figures 4(c) & 4(e)
with no power consumed in Figures 4(b) & 4(d).

2.3 Adiabatic Combinational Circuit Architecture

The architecture of adiabatic combinational logic circuits
is organized into several consecutive layers of logic powered
by power clocks that are shifted in phase to facilitate the
transfer of signal values from one layer to the next. Unlike
traditional CMOS circuits where a wire conveys the logical
signal, adiabatic circuits require two wires that operate in
a complementary fashion when the circuit’s power clock is
operating in any segment except idle. This manner of signal
is often referred to as dual-rail. Furthermore, the evaluation of
adiabatic logic gates is synchronous with respect to its power
clock unlike CMOS circuits which are entirely asynchronous.
Indeed, adiabatic combinational logic circuits can be naturally
pipelined with new inputs accepted at suitable times during the
respective power clock phase. Figure 5 presents the architecture
of a simple multilayered adiabatic logic circuit consisting of
four buffer-inverters powered by four power clocks operated at
phases displaced by 90◦. Note transfer of values from one layer
to the next when the current power clock is in the hold segment
while the subsequent layer is in the charge segment.

3 Adiabatic VHDL Models

Refining the ideas introduced in §2, VHDL models for
adiabatic circuits are presented here. Recall, hardware
description languages (HDLs) are programming languages that
model complex digital systems and are the source for hardware
synthesis. HDLs facilitate specification of digital systems by
modeling systems logically rather than at the circuit level. In
addition, HDLs include familiar high-level language (HLL)
programming capabilities for computing static constants, to
support system modeling, and to provide desired modeling
capabilities. For adiabatic logic circuits modeled at a temporal
resolution where the influence of the power clock is important,
the HLL features will be used to implement the logical
behaviors of adiabatic logic circuits.

3.1 Anatomy of a VHDL Model

A VHDL model consists of an entity and an architecture [5].
The entity defines the model interface including the entity’s
signals, signal types, and signal modes (input, output, etc.).
Further, model meta-information can be passed through optional
generic parameters. Not unexpectedly, VHDL built-in types
include the bit and bit_vector types. In addition, IEEE
Standard 1164 [4] defines the more comprehensive std_logic
type that better models use cases that occur in traditional
digital circuits. For example, the std_logic type handles high
impedance connections and wired logic connections for passive
logic that are circuit level effects that extend to logic circuits.
Considering the operation of adiabatic circuits described in
§2, neither bit nor std_logic provides suitable models for
adiabatic logic circuits.

Figure 6 shows an example of a VHDL model for a two-input
AND gate using the std_logic type. The AND gate model
shows declarations consisting of two inputs & one output and
includes the behavioral model code for a two-input AND gate.
Delays, extracted using a separate circuit analysis process, can
be inserted consistent with the synthesized circuit.

3.2 Adiabatic Logic Values

At the circuit level, adiabatic logic values are more
complicated than traditional logic values for several reasons.
First, in adiabatic circuits, gate outputs are “dual railed” where
a circuit structure generates both the true and complementary
output values. Second, due to the effect of the power clock, the
circuit output value is only valid at certain times as previously
shown in Figure 5. Indeed, a logic one is a pulse that coincides
with the circuit’s power clock on the true sense gate output and
a logic zero is a pulse on the complementary sense gate output
while the circuit’s power clock is active. While this operation is
inherently analog, the circuit outputs can be categorized as logic
one and logic zero. Taking a broader view of timing and circuit
state, a suitable discretization of the behavior can be proposed
in a manner that is consistent with adiabatic circuit operation.
What follows is a discussion of the discretizing of the timing
and circuit logic values.

The nature of the power clock provides straightforward
guidance for discretizing time. With the dynamics of adiabatic
circuits naturally falling into four distinct operating modes, it

82 IJCA, Vol. 29, No. 2, June 2022

Q
1

Q
4F

C

 F

C
F

Q
2

Q
3 A

φ
i

A

 F

A=0V

A=Vcc

Q
1

Q
4F

C C
F

Q
2

Q
3 A

 F =0V

φ
i

A

I

I=0A

=0V

 F =0V

Q
1

Q
4F

C C
F

Q
2

Q
3 A

C

C
=V (t)

V (t)
C

≅
 F =0V

φ
i

A

C

 F

I=I (t)

(a) Circuit model (b) Idle (c) Charge

Q
1

Q
4F

C C
F

Q
2

Q
3 A

 F =0V

φ
i

A

H

I=0A

=Vcc

 F =Vcc

Q
1

Q
4F

C C
F

Q
2

Q
3 A

R

 F =0V

φ
i

A

R

 F

I=I (t)

=V (t)
R

R
≅V (t)

(d) Hold (e) Recover

Figure 4: Simplified buffer-inverter circuit models for input A='1'

makes sense to discretize the phase into four segments. The
following type declaration reflects the discretization suitable for
adiabatic VHDL models.

type simplePhaseSegment is

('I','C','H','R');

The simplePhaseSegment type specifies the values 'I', 'C',
'H', and 'R', representing idle, charge, hold, and recover
respectively. For segments where the power clock is changing
(in 'C' and 'R'), no circuit dynamics are modeled, rather
the logical result reflecting the values at the end of the
segment are reported. Any varying circuit level quantities
will be represented symbolically in that segment. Extending
simplePhaseSegment is phaseGeneral which is a record
including a simplePhaseSegment and phase index fields.

A new basic type, aBitSimple, is an eleven valued logic
system defined to represent the range of adiabatic signal values
that reflect the logic value, nature of the circuit, and value in
relation to the phase. In this work, we have chosen to not
differentiate the signal strengths during the charge and hold
phases to facilitate interpretation of timing diagrams. Including
these are straightforward and results in five additional signal
values covering respective activities during the charge phase.
The permissible values for this type are summarized in Table 1.

The fully qualified signal VHDL model is defined record type
that includes both the signal value and the phase:

type aBit is record

val : aBitSimple;

myPhase : phaseGeneral;

end record;

Including the phase in the signal definition enables run time
checking to confirm the aBit phase is consistent with the
assigned phase of the gate’s power clock.

Several utility routines have been created to help manage
signal values and phases. Some routines facilitate the

Table 1 Summary of adiabatic signal
values for the aBitSimple
type

Value Description
'U' driving uninitialized value
'X' driving unknown value
'0' driving logic zero
'1' driving logic one
'Z' high impedance
'u' recover uninitialized value
'x' recover unknown value
'L' recover logic zero
'H' recover logic one
'z' recover high impedance
'*' fully discharged

conversion between standard signal types (bit and std_logic)
and the new aBit type. Furthermore, operator overloading for
the new logic type has been implemented to permit the natural
composition of logic expressions. In the event indeterminate
inputs or phase errors occur, the logic operations evaluate to
unknown values ('X' or 'x') to facilitate troubleshooting.
Finally, the logic values 'Z' and 'z', along with the requisite
bus resolution functions, permit high impedance bus modeling.

3.3 Logical Adiabatic Gate Model

The logical adiabatic gate model requires changes both to
the gate entity and to the behavior defined in its architecture
compared with conventional gate models. The adiabatic gates
perform logic functions, so one reasonable approach would
be to adopt traditional logic values in the gate model. In
this approach, phase information would be lost. Furthermore,
adiabatic gates are dual rail, whose representation is not
as important as the power clock phase in logical modeling.

IJCA, Vol. 29, No. 2, June 2022 83

L
a
y
e
r 3

L
a
y
e
r 2

L
a
y
e
r 1

φ
1

φ
2

φ
3

φ
4

L
a
y
e
r 4

Inputs Outputs

Power Clock

Phases

(a) Circuit architecture

A

A

φ
4

φ
3

φ
2

φ
1

F

F

Z

Z

Y

Y

X

X

(b) Buffer-inverter chain

φ1

φ2

φ3

φ4

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

C
I

 R

I
C

I

C

C C

C

C

C

I

II I

I

I

I II

I

H H H

HHH

H H H H

HHH

 R R

 R R R R

 R R R C

 R R RC C C C

X

Y

Z

A

’1’ ’0’ ’1’

’1’’0’’1’

’1’ ’0’ ’1’

’1’
’0’’1’

’1’ ’0’ ’1’

F

(c) Timing diagram for buffer-inverter chain.

Figure 5: Adiabatic circuit architecture and operation

entity and2 is

port(a,b: in std_logic;z:out std_logic);

end entity and2;

architecture behavioral of and2 is

begin

if a='0' or b='0' then z<='1' after 500 ps;

elsif a='1' and b='1' then z<='0' after 200 ps;

else z<='X' after 350 ps;

end if;

end architecture behavioral;

Figure 6: Example VHDL model

However, their explicit inclusion provides an opportunity to
have visibility of all signals in the circuit. Apropos, the entity
for the AND gate shown in Figure 7 includes dual rail input &
output logic signals and the clock phase driving the gate.

entity adbAnd2 is

port(

phi : in generalPhase;

a,an: in aBit;

b,bn: in aBit;

z,zn:out aBit

);

end entity adbAnd2;

Figure 7: Entity for two-input adiabatic AND gate

Determining the gate outputs is no longer a simple matter of
evaluating the gate’s logic function based on the circuit inputs
because of the dependence on the power clock segment. The
model presented in Figure 8 implements the behavior for the
two-input adiabatic AND gate that accounts for the power clock.
When the clock phase changes, the gate inputs are verified to

be in phase and to be correctly lagging the gate’s power clock
phase. When a phase error is detected, the output signal is
assigned an 'X' value. Since logical operations have been
overloaded, the gate logic function is expressed in a natural
fashion, permitting logic equations to model the respective
MOS switching networks. Logic operations are evaluated in
their respective common phase, facilitating the composition of
complex logic functions. The resulting output value is stored
in a temporary variable so that the phase can be correctly
updated to be consistent with the power clock for the gate. In
transitioning to and during the hold segment, the logic gate
outputs remain constant in the model.

3.4 Extending to Other Logic Gates

The dual rail nature of the logic gates simplifies creating
families of logic gates. Signal inversion is accomplished simply
by swapping the true and complementary signal rails requiring
no additional circuitry. Indeed, with DeMorgan’s Theorem, it is
easy to show that by swapping dual rail signals to complement
inputs & outputs, the two-input AND gate can also serve as an

84 IJCA, Vol. 29, No. 2, June 2022

Table 2 Utility functions and procedures

Name Purpose
isCharging function, returns true when power clock is charging
isHolding function, returns true when power clock is maximal
isRecovering function, returns true when power clock is discharging
isIdle function, returns true when power clock is off
deenergize procedure, reduces the strength of signal while retaining logic value
assignToPhase procedure, assigns a phase to a signal

process(phi)

variable zInt ,znInt:aBit;

begin

-- check for valid input and output

-- phase segments

if(isCharging(phi)) then

zInt <= a AND b;

zIntn <= an OR bn;

elsif isHolding(phi) then

-- by VHDL semantics ,

-- no update -no signal change

elsif isRecovering(phi) then

zInt := deenergize(zInt);

znInt := deenergize(znInt);

else -- idle

zInt.val := '*';
znInt.val := '*';

end if;

assignToPhase(zInt , phi);

assignToPhase(znInt , phi);

z <= zInt;

zn <= znInt;

end process;

Figure 8: Behavioral model for two-input adiabatic AND gate

OR, NAND, or NOR gate. In addition, more complex logic
functions can be modeled using the logic equation for the true
input values and the dual logic equation for the complementary
input values.

For example, the logic equations for a full adder are

S = A⊕B⊕Ci
Co = A ·B+A ·Ci +B ·Ci

(1)

With traditional CMOS logic, the full adder can be
implemented with several gates. In adiabatic logic, each
logic function can be implemented with an NMOS switching
network, so the full adder can be implemented with
two adiabatic logic gates. The logic equations for the
complementary networks are

S = A⊕B⊕Ci
Co = (A+B) · (A+Ci) · (B+Ci)

(2)

The second example is a multiplexer with dedicated, mutually
exclusive select lines. The general true and complementary
logic equations are

Z =
N−1

∑
i=0

SiDi Z =
N−1

∏
i=0

(Si +Di), (3)

where N is the number of data inputs. It is also easy to show that,
for N = 2, (3) can specify two-input XOR and XNOR gates.

3.5 Test Bench

A test bench is a special VHDL model which is used to verify
the circuit model. The test bench instantiates the unit under
test, generates all stimulus, and can include code to verify the
model’s outputs are correct. Figure 9 gives the VHDL process
that generates the ith power clock. For four power clock phases,
each power clock phase i has the same period T and is delayed
by (i− 1)× 90◦, or T(i− 1)/4 with respect to a reference time
at the start of the simulation. This can be easily generalized
for a different number of power clock phases. In Figure 9,
the power clock process includes one full clock period interval
at the beginning of the simulation with no activity among all
clocks. The first wait statement ensures that all power clocks
are inactive for at least one full period of the power clock and
the start of each is delayed to ensure each clock will be in the
appropriate relative phase.

...

constant T: time := 100 ns;

...

process

-- generate the ith power clock phase

-- i in {1,2,3,4}

begin

Phi_i <= ('I',i-1);
wait for T*(3+i)/4; -- See narrative

loop

Phi_i.segment <='C'; wait for T/4;

Phi_i.segment <='H'; wait for T/4;

Phi_i.segment <='R'; wait for T/4;

Phi_i.segment <='I'; wait for T/4;

end loop;

end process;

Figure 9: Generating the ith phase of the power clock

In order for outputs to conform to proper adiabatic operation,
inputs must be set in the appropriate manner to ensure the
adiabatic operation of the gate receiving the input. In addition,
it is possible that different inputs may be required at different
logic layers, and hence must be synchronized to the correct
power clock phase. This can be accommodated in one of two
ways. First, the inputs can be provided at the same time and
always on the same phase. In this case, buffers will need to be
inserted to delay the signal until it has the required phase for
its respective input layer. Second, the inputs can be provided
and synchronized to the required phase. The modeling satisfies
either case.

IJCA, Vol. 29, No. 2, June 2022 85

4 Examples

Three examples of adiabatic logic circuit models are
presented here. In the first, a full adder model is presented. In
the second, a Kogge-Stone adder model is presented. In the
third, a more complex model of the AES S-Box is presented.
The models were verified using GHDL Version 0.33 under the
IEEE-1164 1993 release of the VHDL standard on Ubuntu
16.04. In addition, while the modeling is based on the 1993
standard, no issues are anticipated for later VHDL standard
releases. Waveforms are displayed using the GTKWave V3.3
waveform viewer.

4.1 Full Adder

A simple but useful example to consider is the full adder. The
full adder is a key building block used to implement computer
arithmetic hardware. The full adder model consists of two
logic gates and operates using one power clock phase using the
logic functions defined in (1) and (2). The behavior is modeled
by modifying the code in Figure 8 by substituting the logic
equations for the sum and carry functions respectively in place
of the AND gate logic equations. The simulation results are
presented in Figure 10. The inputs provided to the full adder
sequence through all eight input combinations in successive
power clock cycles, noted with cursors A-H.

4.2 Kogge-Stone Adder

The next example is a Kogge-Stone adder (KSA) [2, 6] and
demonstrates the operation of a more complex multilayered
combinational circuit. The KSA adds two binary integers and is
among the fastest combinational adders, whose implementation
requires log2N + 2 layers of adiabatic logic. The KSA adder
can be fully implemented with commonly known gates such as
AND, OR, XOR, & etc. By implementing certain composite
functions to provide carry generates & propagates as individual
logic gates, the circuit architecture can be simplified. Indeed,
these composite gates are part of the formulation of KSA adders
and are summarized in Table 3. Note that the Buffer cell is not
a part of the traditional KSA adder formulation. Rather, the
Buffer cell is included in this model to support proper adiabatic
circuit operation to match the power clock phase for the values
propagating from layer to layer in the adder. Note also that
subscripts on gate input values are nominal and are related to the
local interconnections required to implement the KSA adder.

Table 3 Kogge-Stone logic cells

Cell Logic Equation
Black cell Gout = (P1 ·G0)+G1 Pout = P1 ·P0
Gray cell Gout = (P0 ·G0)+G1
White cell Gout = P1 ·P0 Pout = P1 ⊕P0
Buffer cell Gout = G0 Pout = P0

The VHDL model for the KSA adder has been implemented

in a generic fashion so that the same architecture can implement
any power-of-2 sized KSA adder. Figure 11 gives the entity used
to model the KSA adder. In order to simplify the presentation
of results, a four-bit KSA adder is demonstrated. Specifically,
the VHDL model for the four-bit adiabatic KSA adder modeled
here requires log2N + 2 = 4 layers of logic to implement.
Figure 12 shows the simulation beginning at 4 µs for a circuit
powered by power clocks with 100 ns periods. Note that signal
complements have been omitted. At cursor A (4.0875 µs),
the input Op1A=0101, Op2A=1001 and CinA=1. The output
layer is charging at cursor C (4.1875 µs) and CoutC=0, and
SumC=1111. In addition, at cursor C, the inputs are changed
to Op1C=1010, Op2C=0101 and CinC=0 resulting in CoutF=0,
and SumF=1111 at 4.2875 µs.

4.3 Advanced Encryption Standard (AES) Substitution
Box

In this section, we present a significantly more complex
model which is the logic for the Advanced Encryption Standard
(AES) substitution box (S-box). The purpose of the S-box is
to introduce a nonlinear, but difficult to reverse, transform to
enhance the security of the encryption. The interested reader
can find more information by consulting the AES standard [12].
The S-box is a complex combinational logic function devised
by others [11, 13]. Their proposed circuit, however, cannot be
directly implemented using adiabatic logic circuits because of
the multiphase nature of the adiabatic logic circuits.

The logic for the S-Box follows from the implementation
method proposed by Satoh et al. [13] and detailed
combinational logic S-Box implementation described by Mui
[11]. The respective authors note the efficiency of their
implementation in terms of hardware. Figure 13 gives
an overview of the S-Box and inverse S-Box logic. A
transformation, (δ), is applied to the original GF(28) system
to permit decomposition in terms of a GF(24) system, and
subsequently a GF(22) system to permit derivation of logic
functions for intermediate values [11, 13]. Once the system is
expressed in terms of a GF(22) system, the logic functions at
this level can be expressed directly as four-input, two-output
logic expressions. From the GF(22) logic functions, logic
expressions for the GF(24) and then ultimately GF(28) can be
derived.

Figure 14 shows the individual logic blocks that are used in
both the S-Box and inverse S-Box transformations. The number
of layers of adiabatic logic are indicated above each block. The
logic is mostly implemented with two-input gates along with
a handful of three-input gates. The δ and affine transforms T
are matrix/vector operations on individual bits using AND and
exclusive-OR operations, i.e. GF(2).

Inspection of Figures 13 & 14 reveal a complex hardware
organization with a multitude of paths for logical results that
flow through varying numbers of layers of logic. For proper
operation, the phases of inputs received for any block must be
identical and the block must be energized by the next sequential

86 IJCA, Vol. 29, No. 2, June 2022

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns 900ns

phi1 ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’

A ’0’ ’1’

An ’1’ ’0’

B ’0’ ’1’ ’0’ ’1’

Bn ’1’ ’0’ ’1’ ’0’

Ci ’0’ ’1’ ’0’ ’1’ ’0’ ’1’ ’0’ ’1’

Cin ’1’ ’0’ ’1’ ’0’ ’1’ ’0’ ’1’ ’0’

Co ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’

Con ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’

S ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’

Sn ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’

A B C D E F G H

Figure 10: Full adder simulation results

entity KsaGeneric is

generic(order : integer := 2); -- width =2**2=4

port (

phi1 ,phi2 ,phi3 ,phi4 : in phaseGeneral;

adbCin , adbCinN : in aBit;

adbOp1 , adbOp1n : in aBit_vector (2** order -1 downto 0);

adbOp2 , adbOp2n : in aBit_vector (2** order -1 downto 0);

adbSum , adbSumN : out aBit_vector (2** order -1 downto 0);

adbCout , adbCoutN : out aBit

);

end KsaGeneric;

Figure 11: Entity for Kogge-Stone adder. Note that ** has been overloaded for integer types

power clock phase. Figure 15 gives the annotated block diagram
for the adiabatic logic implementation. Differing from previous
examples, the logic circuit is implemented using six power clock
phases so that complementary power clock phases, power clocks
exactly 180◦ out of phase, are nonoverlapping. Further, because
the input phases to a logic block must match, the phase for an
unmatched signal is matched with its destination by adding a
suitable number of buffer-inverter gates and are denoted by the
ΦN blocks. The solution attempts to optimize the hardware by
not fully pipelining the forwarding in some cases.

Both the S-Box and inverse S-Box models were simulated
for all possible input combinations and verified for correctness
in the test bench. Figure 16 gives an example timing result for
an S-Box input of 11000011.

5 Summary and Future Work

A modeling framework has been presented that is consistent
with the logical operation of adiabatic logic circuits. A new
type, aBit, was defined that captures the main modes of
operation for adiabatic circuits. The type models the principle
adiabatic signal features and ties the operation of the logic
circuits to the power clock. The framework for defining logic
functions was presented. Finally, three modeling examples with
their respective simulation results were presented.

Future work will include verifying the operation of the
modeling framework on a wider variety of adiabatic and
reversible circuits. In addition, applicability to different
clocking schemes & timing, energy modeling, and transistor
level synthesis will be investigated as well.

References

[1] E. Christen and K. Bakalar. “VHDL-AMS – A
Hardware Description Language for Analog and Mixed-
Signal Applications.” IEEE Transactions on Circuits and
Systems–II Analog and Digital Signal Processing, 46(10):
1263–1272, October 1999.

[2] M. Cutitaru. IDPAL A Partially-Adiabatic Energy-
Efficient Logic Family: Theory and Applications to Secure
Computing. PhD Thesis, Old Dominion University,
Norfolk, Virginia, USA, August 2014.

[3] J. S. Denker. “A Review of Adiabatic Computing.” IEEE
Symposium on Low Power Electronics, 94–97, San Diego,
California, USA, pp. 94–97, September 1994.

[4] IEEE Computer Society. IEEE Standard Multivalue Logic
System for VHDL Model Interoperability (Std logic 1164),
March 1993.

[5] IEEE Computer Society. IEEE Standard VHDL Language
Reference Manual, IEEE Std 1076TM-2008, January 2009.

[6] P. M. Kogge and H. S. Stone. “A Parallel Algorithm for
the Efficient Solution of a General Class of Recurrence
Equations.” IEEE Transactions on Computers, C-22(8):
783–791, August 1973.

[7] J. Koller and W. Athas. “Adiabatic Switching, Low
Energy Computing, and the Physics of Storing and Erasing
Information.” Workshop on Physics and Computation,
1992. PhysComp ’92, Dallas, Texas, USA, pp. 267–270,
October 1992.

IJCA, Vol. 29, No. 2, June 2022 87

4us 4.1us 4.2us 4.3us 4.4us 4.5us

Phi1 ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’

Phi2 ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’

Phi3 ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’

Phi4 ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’

Op1(3) ’1’ ’0’ ’1’ ’0’ ’1’ ’0’

Op1(2) ’0’ ’1’ ’0’ ’1’ ’0’ ’1’

Op1(1) ’0’ ’1’ ’0’ ’1’ ’0’

Op1(0) ’1’ ’0’ ’1’ ’0’ ’1’

Op2(3) ’0’ ’1’ ’0’ ’1’ ’0’ ’1’

Op2(2) ’1’ ’0’ ’1’ ’0’ ’1’ ’0’

Op2(1) ’0’ ’1’ ’0’ ’1’

Op2(0) ’1’ ’0’ ’1’ ’0’

Cin ’0’ ’1’ ’0’ ’1’ ’0’ ’1’

Cout ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’

Sum(3) ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’

Sum(2) ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’

Sum(1) ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’

Sum(0) ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’

A B C D E

Figure 12: KSA Simulation results at 4us

D
in

δ
8 8

x2 xλ

4

4

x−1

4

4

4

4

4
4

44

4

4

4

8

δ−1
8

D
out

8

T
A

GF(2)
4

GF(2)
4

GF(2)
4

4

4

4

GF(2)
4

GF(2)

(a) Forward S-Box transformation

δ
8

x2 xλ

4

GF(4)

4

x−1

4

4

4

4

4
4

44

4

4

4

8

δ−1 D
out

8

D
in

GF(2)
4

GF(2)
4

GF(2)
4

GF(2)
4

4

4

−1T
A

8 8

(b) Inverse S-Box transformation

Figure 13: S-Box block diagram based on composite field decomposition [11, 13]

[8] A. Kramer, J. S. Denker, B. Flower, and J. Moroney.
“2nd Order Adiabatic Computation with 2n-2p and 2n-
2n2p Logic Circuits.” Proceedings of the International
Symposium on Low Power Design ISLPD’95, Dana Point,
California, USA, pp. 191–196, 1995.

[9] R. Mita and G. Palumbo. “Modeling of Analog Blocks by
Using Standard Hardware Description language.” Analog
Integrated Circuits and Signal Processing, 48(2):107–120,
August 2006.

[10] Y. Moon and D.-K. Jeong. “An Efficient Charge Recovery
Logic Circuit.” IEEE Journal of Solid-State Circuits, 31
(4):514–522, April 1996.

[11] E. N. Mui. “Practical Implementation of Rijndael S-
Box Using Combinational Logic.” unpublished technical
report, 2007.

[12] NIST. “FIPS PUB 197, Advanced Encryption Standard

(AES),” U.S. Department of Commerce/National Institute
of Standards and Technology, 2001.

[13] A. Satoh, S. Morioka, K. Takano, and S. Munetoh.
“A Compact Rijndael Hardware Architecture with S-
Box Optimization.” 7th International Conference on the
Theory and Application of Cryptology and Information
Security (ASIACRYPT 2001), Gold Coast, Australia, pp.
239–254, December 2001.

[14] L. Varga, G. Hosszú, and F. Kovács. “Two-level Pipeline
Scheduling of Adiabatic Logic.” International Spring
Seminar on Electronics Technology (ISSE 2006), St.
Marienthal, Germany, pp. 390–394, May 2006.

[15] D. J. Willingham. Asynchrobatic Logic for Low-Power
VLSI Design. PhD thesis, University of Westminster,
London, England, March 2010.

88 IJCA, Vol. 29, No. 2, June 2022

δ
8 8

5
4

4

4

GF(2)
4

1

x2

4 4

2

xλ
4 4

2

Φ+N

4 4

N

(a) δ transform (b) GF(24) sum (c) GF(24) square (d) GF(24) product with λ=1100 (e) Forward input N phases

4

4

4

GF(2)
4

5

x−1
44

5

δ−1
88

7

T
A

8 8

3

−1T
A

8 8

2

(f) GF(24) product (g) GF(24) inverse (h) δ−1 transform (i) Affine transform (j) Inverse affine transform

Figure 14: S-Box block components. The number above each component is its respective number of logic layers.

x−1 δ−1

Φ+2

D
in

δ

x2 xλ

Φ+5Φ+1

D
out

Φ+0

GF(2)
4

GF(2)
4

GF(2)
4

GF(2)
4

GF(2)
4

V
2

L

V
3

L

V
H

2
V

3

H
V

3

H,+2

V
0

H,+0

V
1

L,+5

V
4

V
5

V
6

H

V
6

L

V
6

V
7

V
1

L

V
1

H

V
1

V
L,+1

T
A

3

1

5

2 2 2

51

1

5

1 5

5

7

5

buffer 11 mod 6 = 5 layers

buffer 12 mod 6 = 0 layers

Figure 15: Annotated S-Box block diagram.

A

1370ns 1371ns 1372ns 1373ns 1374ns 1375ns 1376ns 1377ns 1378ns 1379ns 1380ns

test

tick

Din C2 C3 C4

Dout (idle) 25 25(idle) 25 25(idle) 25 25(idle) 25 25(idle) 25 25(idle) 25 25(idle) 3A 3A(idle) 2E 2E(idle) 2E 2E(idle) 2E

V_1 68(idle) 68 68(idle) 68 68(idle) 68 68(idle) 69 69(idle) 69 69(idle) 69 69(idle) 69 69(idle) 69 69(idle) 69 69(idle) 69

V_1^H 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6

V_2^H 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0

V_3^H 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6

V_3^H+2 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6

V_1^L 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1

V_1^L,+1 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle)

V_2^L 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 7 7 (idle) 7 7 (idle) 7 7 (idle) 7 7 (idle) 7 7 (idle) 7 7 (idle)

V_3^L 7 7 (idle) 7 7 (idle) 7 7 (idle) 7 7 (idle) 7 7 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0

V_4 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle)

V_5 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 5 5 (idle) 5 5 (idle) 5 5 (idle) 5 5 (idle) 5

V_0^H,+0 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6

V_1^L,+5 2 2 (idle) 2 2 (idle) 2 2 (idle) 2 2 (idle) 2 2 (idle) 3 3 (idle) 3 3 (idle) 3 3 (idle) 3 3 (idle) 3 3 (idle) 3

V_5^H 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1

V_5^H 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 7 7 (idle) 2 2 (idle) 2 2 (idle) 2 2 (idle) 2

V_7 2F 2F(idle) 2F 2F(idle) 2F 2F(idle) 2F 2F(idle) 2F 2F(idle) 2F 2F(idle) 2E 2E(idle) 23 23(idle) 23 23(idle) 23 23

B

Figure 16: S-Box simulation result for an input of 11000011

Lee A. Belfore II joined the
Department of Electrical and
Computer Engineering at Old
Dominion University, Norfolk,
Virginia, in 1997 and is currently
an Associate Professor. He
received his Ph.D. in Electrical
Engineering from The University
of Virginia, his MSE in Electrical
Engineering/Computer Science
from Princeton University, and

his BSEE in Electrical Engineering from Virginia Tech.
His research interests include modeling and analysis of
low power digital electronics technologies, custom data
processing systems using FPGAs, machine learning, and
autonomous vehicles.

IJCA, Vol. 29, No. 2, June 2022 89

ISCA Copyright© 2022

Mining for Causal Regularities

Thomas Bidinger*, Hannah Buzard*, James Hearne*, Amber Meinke*, and Steven Tanner*
Western Washington University, Bellingham, Washington 98225, USA

Abstract

This paper reports on an algorithmic exploration of the theory
of causal regularity based on Mackie’s theory of causes as
MINUS conditions, i.e., minimal insufficient but necessary
member of a set of conditions that, though unnecessary, are
sufficient for the effect. We describe the algorithm to extract
causal hypotheses according to this model and the results of its
application to a number of real-world data sets. Results suggest
further promising applications, modifications and extensions
that might derive further insights of a dataset.

Key Words: Causal regularity, data mining, INUS
condition, MINUS condition, Mill's methods.

1 Introduction

Of the several established approaches to the notion of
causality, the regularity view is the oldest. It was introduced by
Hume in the 18th century, elaborated upon by Mill in the 19th
century and finds its most detailed articulation in Mackie in the
20th century. In this view, causes are to be identified as
conditions or events that are uniformly accompanied or
followed by some effect. Importantly, in this view, no other
intrinsic relation between cause and effect is assumed other than
regularity. This theory of causes invites the possibility of a
search for causes by appeal to strict pattern matching,
independent of statistical or probabilistic considerations. What
is reported here is one approach to realizing this conception of
causes and their identification.

2 Approach

In the more recent formulation by Mackie, the causal
antecedents of an effect are complex configurations of facts. To
motivate this view, note that a match might flare because it is
struck on an abrasive surface in the right conditions – absence
of moisture and presence of oxygen – or it might flare because
it is heated to a flash point under similar conditions, or placed
in proximity to another flame. In Mackie’s formulation, a cause
is what he dubs an INUS condition, an insufficient but necessary
member of a set of conditions which, though unnecessary, are

* Department of Computer Science, 516 High Street. Emails:
bidingt@wwu.edu, buzardh@wwu.edu, James.Hearne @wwu.edu,
meinkea@wwu.edu, and tanners2@wwu.edu.

sufficient for the effect. Formally, this means that the search
for causes is equivalent to searching for valid implications
whose right-hand side is the effect and whose left-hand side
is a disjunctive normal form expressing configurations of
conditions: There is no a priori restriction on the number of
elements in each of the conjuncts nor any restriction as to their
number. Indeed, there are several other variations on this
idea, as well as extra constraints discussed below. A further
constraint, not originally articulated by Mackie, is that the
conjunctions participating in an INUS be minimal; that is,
they should be purged of unnecessary conjuncts.

3 Related Work

There is a large literature on causal discovery. Since this
research concerns the causal regularity theory of causation, we
restrict or review antecedents in the literature to work in that
tradition. Although initiated by Hume and elaborated upon by
J.S. Mill, the current locus classicus of the regularity theory is
the article by (Mackie, 1964) [5], followed by his monograph
(Mackie, 1984) [6]. Since then, Mackie’s view has received a
number of computational treatments. Baumgartner has
provided philosophical justification of the regularity theory of
causation and developed an algorithm restricted to
configurations of Boolean values (Baumgartner, 2009 [2],
2009). Beirlan, Leuridan and Van De Putte support the idea
computationally through a decidable subset of first order logic
(Bierlan 2018) [3].

4 Method

4.1 A Brief Description

The purpose of our algorithm is to find cause-effect
relationships implicit in datasets. The datasets used must consist
of a table where each row is one observation, and each column
represents an event. Each cell can signify that an event
occurred, didn’t occur (negated event) or that it’s unknown
whether or not it occurred. The algorithm starts with a chosen
event and creates conjunctions (lists) of all events that also occur
in the case that the chosen effect also occurred. Each
conjunction that was generated is then tested to see whether it is
necessary to the chosen effect occurring or not. A conjunction
is necessary if it is not a superset of any of the other
conjunctions. If it is a superset, then it is removed because there

mailto:bidingt@wwu.edu
mailto:buzardh@wwu.edu
mailto:James.Hearne%20@wwu.edu
mailto:meinkea@wwu.edu
mailto:tanners2@wwu.edu

90 IJCA, Vol. 29, No. 2, June 2022

exists a simpler conjunction that better represents the data.
These new conjunctions are then tested for sufficiency.
Sufficiency is tested by ensuring that the chosen effect MUST
occur if the given set of conjuncts also occurs. This is done by
making sure that the set of conjuncts does not also appear in any
of the rows where the chosen effect does not occur. Adding
Figures and Tables.

4.2 In-Depth Account

4.2.1 Input Dataset: The algorithm assumes an ontology of
individual objects and a collection of predicates which may or
not be true of each. The algorithm also accommodates worlds
in which predicate values are unknown for some objects.
Assuming that the predicates will be relatively few and in order
to accommodate an indefinite number of objects, it happens that
columns correspond to predicates/attributes and rows denote the
value of the predicates when applied to each object, including
the possibility of unknown true values.

4.2.2 Formatting the Input Dataset: The dataset that is
given as input is formatted according to how the algorithm
expects the data to appear (only values of 1, 0, and -1 are
accepted). This allows our algorithm to be versatile and make
accurate computations for all datasets. The program prompts
the user to label each column and choose whether to keep the
column data as it is, remove the column from the dataset, or one-
hot encode the data in the column. One hot encoding is a
process by which categorical variables are converted into a form
that could be provided to ML algorithms using 1’s and 0’s. A
visual representation of how to utilize one-hot encoding is
shown in Diagram 1 below. The user is prompted to make these
changes because our algorithm will not accept data that is not
able to be represented with a 1, -1, or 0 and will ask the user to
re-input the data if it finds a number not in this form.

4.2.3 Choose an Effect: The effect whose possible causes is
in input to the process. The data is separated into two subsets:
one object for which the effect is positive and one for objects in
which the effect is negative, i.e., conditions in which it does not
occur. The algorithm uses the former subset to generate
potential MINUS-conditions, and the latter subset to check
whether or not the generated potential MINUS-conditions are
sufficient to prove the chosen effect.

Diagram 1

4.2.4 Generate Possible Minus Conditions. To generate
potential MINUS-conditions, the algorithm iterates through all
rows in the data where the chosen effect obtains. For each of
these rows, a set is created of all of the predicates in the row.
All subsets are generated using this row data and each set that

doesn’t include the chosen effect and is not empty is added to
the set of potential MINUS-conditions. It should be noted that
this set of generated MINUS-conditions is a superset of the set
that contains all sufficient conditions, and that the disjunction of
the potential MINUS-conditions in this set is necessary for the
chosen effect to occur (assuming there is more than one event
type).

4.2.5 “Sufficient” and “Necessary” MINUS-condition
check: Once the algorithm has generated the set of possible
MINUS-conditions, each condition needs to be tested to check
that it is sufficient and not a superset of a previously identified
condition. By removing such supersets, the algorithm ensures
that all parts of the proven MINUS-conditions are necessary. In
order to prove that a given potential MINUS-condition is
sufficient, the algorithm checks if the entire conjunction occurs
in a row where the effect does not occur. Given that the
conjunction being tested was previously known to occur when
the chosen effect occurs, then if it also does not occur in a row
where the chosen effect is negative, then it is proven to be
sufficient for the given dataset.

4.2.6 Algorithm Output: Finally, all the identified MINUS-
conditions are combined into a disjunctive normal form,
presented as output. Each conjunction (MINUS-condition) is
considered as a causal for the effect., one element of which
would be what is normally identified as the cause of the event.
It is important to note that there may be a case where it is
impossible to have a necessary disjunction of conjunctions for a
specific chosen effect (see Table 1 using R as the chosen effect).
In Table 2, all data for rows ‘a’ and ‘c’ are equivalent except for
the effect which occurs in one and doesn’t occur in the other.
Because of this, there is no MINUS-condition that includes row
c. Therefore, no disjunction of MINUS-conditions exists which
is necessary for R to occur in this dataset. However, if there is
a disjunction of MINUS-conditions where the disjunction is
necessary, each disjunct is sufficient, and each conjunct in each
conjunction is necessary for the conjunction to be sufficient,
then the algorithm will give this as output.

Table 1
P Q R

a 1 -1 -1

b 1 1 1

c 1 -1 1_

Table 2
 P Q R S T U
a 1 -1 -1 0 1 -1
b 1 0 1 1 -1 1
c -1 -1 0 -1 1 -1
d 1 -1 -1 -1 0 1
e 1 0 1 -1 -1 1
f 1 -1 -1 0 1 0
g 0 1 -1 -1 -1 0
h 1 -1 1 1 -1 1

IJCA, Vol. 29, No. 2, June 2022 91

5 Datasets

The datasets used for our algorithm contain columns which
refer to events/attributes and rows that refer to observations.
The value for an observation can be either 1 (event occurred), -
1 (event did not occur), or 0 (unknown). Our algorithm is
unique from other algorithms in the sense that it allows for the
usage of a 0 or unknown in the dataset.

The following is an example of a dataset appropriate to our
implementation that has been used in the development of this
algorithm. In this case, considering the event ‘P’ we can see that
all observations occurred except for the observation ‘c’ and
there is no data provided for observation ‘g.

A portion of the Cleveland Heart Disease dataset explored in
greater depth below is shown in Table 3. This dataset is
important to visualize and understand due to the fact that it can
be used to gain actual knowledge and insight on the causation
of a specific issue, unlike the dataset containing just letters
above.

Table 3
Disease Age Sex ind_typ_angina

1 -1 63 1 1
2 1 67 1 0
3 1 67 1 0
4 -1 37 1 0
5 -1 41 0 0

 6 -1 56 1 0

The columns of the dataset (this is only 4 of the 14 we used)
indicate whether the patient was afflicted with heart disease,
their age, their gender, and whether they experience typical
angina (chest pain) or not. To understand one column of the
data, for the sex columns, all 5 of the patients in this subset were
male and the gender is unknown for one patient, represented as
a ‘0’. We used this dataset to find conjunctions of conditions
that are shown to cause heart disease. These results are
discussed in the ‘Results and Analysis’ section below.

6 Datasets

6.1 Urinary Disease Dataset Description

6.1.1 Dataset Description: This data was designed to
automate the decision making/diagnosis of the presumptive
diagnosis of two diseases of the urinary system, “Acute
Inflammation of Urinary Bladder” and “Acute Nephritis of
Renal Pelvis”. The dataset contains six attributes applicable to
these two diseases, which have similar, but not identical
symptoms. These attributes are as follows: fever present (at or
above 38C), occurrence of nausea, lumbar pain, urine pushing
(continuous need for urination), micturition pains (pain while
urinating), and urethra discomfort (burning, itching, or
swelling). The dataset also contains information on whether or
not each patient associated with this data has one of the diseases,
no diseases, or both diseases. Each instance (row) in the dataset

represents a patient.
6.1.2 Dataset Description: There are certain symptoms

known by experts to signify one or the other disease. One test
of the utility of our algorithm for identifying causal regularities
is to see whether it replicates expert knowledge. Dr. Czerniak,
of the Polish Academy of Sciences, reports that Acute
Inflammation of the urinary bladder is characterized by sudden
occurrence of pains in the abdomen region, urination in the form
of constant urine pushing, micturition pains, and sometimes lack
of urine keeping. The excreted urine is turbid and sometimes
bloody. The body experiences a temperature rise, however most
often not above 38C. By contrast, Acute nephritis of the renal
pelvis begins with a sudden fever that reaches and sometimes
exceeds 40C. The fever is accompanied by shivers and one-or
both-side lumbar pains. Not infrequently, there is nausea and
vomiting and spread of pains in the whole abdomen. Again,
symptoms of acute inflammation of the urinary bladder appear
very often. Our dataset does not cover all of these
characteristics/symptoms such as gender, shivers, and entire
abdomen pain, however, given the data we do have, we should
be able to match up applicable attributes. The algorithm will
give us the combination of individual conditions that lead to
each respectable disease and should pair well with the human
expert findings.

6.1.3 What the Algorithm Identifies: When the algorithm
is run using “Inflammation of urinary bladder” as the chosen
effect, we receive the following proven conditions:

('~fever', 'urethra-discomfort')
('~fever', '~lumbar-pain')
('~fever', 'urine-pushing')
('~lumbar-pain', 'urethra-discomfort')
('~nausea', 'micturition-pains')
('~lumbar-pain', 'urine-pushing')
('nausea', 'urethra-discomfort')
('~fever', 'micturition-pains')
('micturition-pains', 'urethra-discomfort')
('nausea', 'urine-pushing')
('~lumbar-pain', 'micturition-pains')
('urine-pushing', '~urethra-discomfort')
('urine-pushing', 'micturition-pains')

When the algorithm is run using “Nephritis of renal pelvis
origin” as the chosen effect, we receive the following proven
conditions:

('nausea',)
('~urine-pushing', 'micturition-pains')
('~micturition-pains', 'urethra-discomfort')
('fever', 'urine-pushing')
('fever', 'lumbar-pain')
('lumbar-pain', 'urine-pushing')

92 IJCA, Vol. 29, No. 2, June 2022

('fever', 'urethra-discomfort')
('fever', 'micturition-pains')
('lumbar-pain', 'urethra-discomfort')
('lumbar-pain', 'micturition-pains')

These results are very promising and replicate closely the
expertly deduced symptoms. As the output shows, some
symptoms such as urethral discomfort are present more or less
in both diseases, however when these symptoms happen in
conjunction with lumbar pain or a fever, this always signifies
nephritis, not inflammation. Likewise, if a patient has these
symptoms and no lumbar pain or fever, they almost certainly
have inflammation of the urinary bladder. There are also some
conditions, mainly micturition pains, which seem to be only
slightly more characteristic of inflammation over nephritis.

6.2 Heat Disease Dataset

6.2.1 Dataset Description: A promising dataset that both
exhibits the accuracy of our algorithm and reveals important
information regarding heart health, is the Cleveland Heart
Disease dataset from the UCI repository. The Cleveland dataset
is one of the most used datasets in Machine Learning and can be
used to classify whether an individual is at risk for suffering
from heart disease or not. The data was retrieved from 303
individuals and originally contained 76 columns, however, the
shorter version of the dataset, which has been used for all the
published experiments, contains only 14 columns. These
columns are the 14 attributes that were found to have the biggest
impact on classifying heart disease. These attributes chosen for
the Machine Learning experiments are: age, sex (male or
female), whether the patient was experiencing typical angina,
atypical angina, or non-angina related chest pain (angina is chest
pain caused by reduced blood flow to the heart), resting blood
pressure, serum cholesterol level, fasting blood sugar (should be
less than 120 mg/dl), heart disease flagged on ECG 1, heart
disease flagged on ECG 2, patient’s max heart rate, whether the
patient experienced exercise induced angina, patient’s peak
exercise ST segment upward slope indicator, patient’s down
slope indicator of peak exercise ST segment, number of
patient’s major vessels colored by fluoroscopy, whether the
patient has reversible thalassemia defect or fixed thalassemia
defect (thalassemia is an inherited blood disorder).

To get results that show the proven conjunctions of attributes
that cause heart disease, we ran the algorithm and gave ‘disease’
as input for the chosen effect. The algorithm checked 93,759
conditions in 2 minutes and gave 96 proven conditions as
output.

6.2.2 What We Expect: Choosing ‘disease’ as the chosen
effect, we would expect to see conjunctions of the following as
causes of heart disease based on research by medical
professionals:

Sex: Males are more likely to develop heart disease than
women

Blood Sugar: A fasting blood sugar is expected to be
between 80-100, and anything over 100 can be an indicator of

multiple diseases or illnesses, one of those being heart disease
ECG Indicators: If an ECG indicates abnormal heart rates

or an abnormal pattern once or especially twice, these are most
likely signs of heart issues such as heart disease

Thai Fixed and Reversed Defect: This is a type of blood
issue that can lead to organ failure as well as heart issues (one
of the issues being heart disease). Fixed means that it is
permanent and reversed means that the defect can be reversed,
however, both of them can still cause organ damage and heart
failure.

Fasting blood sugar: Over time, high blood sugar can
damage blood vessels and nerves that control the heart which
can cause heart attacks

Max heart rate: Numerous studies have shown that higher
resting heart rate is associated with increased risk of
cardiovascular events and death in men and women.

Upward slope indicator: ST-Elevation is very serious and
can mean that one of the heart's major arteries is blocked. Even
if the artery is not currently blocked, any abnormal ST-Elevation
indicates risk of major artery blockage

Down slope indicator: ST-segment depression is
associated with a 100% increase in the occurrence of three-
vessel/left main diseases and to an increased risk of subsequent
cardiac events

Number of patient’s major vessels colored by
fluoroscopy: Fluoroscopy is used to help the healthcare
provider see the flow of blood through the coronary arteries to
check for arterial blockages. The more blood vessels that show
blockage, the higher the patient is at risk for heart disease and
heart attacks

Serum Cholesterol: A high serum total cholesterol level
has been proven to indicate a potential increased risk for heart
disease.

Resting blood pressure, exercise induced angina and
typical/atypical angina alone cannot accurately predict heart
disease or risk of heart attack, which is why they are not listed
above. However, either of these in conjunction with each other
or other symptoms can be a proven indicator of a patient being
at risk.

6.2.3 What the Algorithm Reveals: In order to best
understand the results we received, we have analyzed a subset
of the output to ensure that the algorithm output matches what
we would expect to see based on expert research. Every
conjunction below lines up with what expert researchers would
say could be a cause of heart disease. Each condition that is not
listed below was also analyzed for correctness.

('sex', 'bloodsugar_exc120', 'ind_for_ecg_2',
'ind_exerc_angina')

This conjunction is valid for being a direct cause of heart
disease according to the research above. Sex can be a cause of
heart disease because males have been shown to be more prone
to heart disease and heart attacks than women. Having an
indicator for heart disease show up on an ECG is also typically
shown to be accurate and mean a patient is at risk for heart

IJCA, Vol. 29, No. 2, June 2022 93

disease. Also, as I explained previously, an individual’s blood
sugar exceeding 120 and exercise induced angina cannot be a
cause on its own, however in conjunction with each other and
the other attributes, they can both be a proven cause.

('ind_atyp_angina', 'ind_exerc_angina', 'fixed_defect')

Using the information above, exercise induced angina and

atypical angina cannot be a cause on its own but in this case both
of those are paired together and also paired with the patient
having thai fixed defect. Fixed thai defect is irreversible which
means it usually eventually will lead to heart failure and in
conjunction with also having chest pain occurring in multiple
instances, this patient is rightfully flagged as being at risk for
heart disease.

('ind_for_ecg_1', 'rev_defect')

Thai reversed defect on its own can be an indicator of heart

disease even though it is reversible because it can cause organ
damage to the heart. This defect paired with the patient being
flagged for heart disease on their ECG puts the patients in an at
risk category and the algorithm correctly identifies them as
potentially suffering from heart disease.

6.3 Soybean Dataset

6.3.1 Dataset Description: One illuminating dataset is the

one on soybean diseases from the 1980s by R.S. Michalski and
R.L. Chilausky. The dataset concerns soybean disease
diagnosis so we can use it to analyze the performance of our
logic in discovering causal regularities. One of the important
factors of this dataset is that there are many missing values/data
points. Our algorithm is designed to work on datasets with
missing data which makes this dataset a great example of this
capability. Another important factor of this dataset is its limited
number of datapoints. There are 307 data points (individual
plants) and none of the 19 classes (different diseases) have more
than 40 examples.

For this test, we only included things that we knew could be
causes of anthracnose. The only predicates allowed were:
temperature, precipitation, hail, and treatment type. This
resulted in a dataset with 307 rows (plants) and 14 columns
(event types)

6.3.2 What we Expect: We tested our algorithm by looking
for things that prevent anthracnose, which is a fungal soybean
disease. This test represents a scenario where a soybean farmer
wants to prevent it in their crop, or just wants to know what can
cause anthracnose. As you will see, these causes can be
discovered by telling our algorithm to find the causes of
anthracnose, and to find the causes of the lack of anthracnose.
Since it is well known by soybean farmers that anthracnose is
known to occur during warm, wet, and humid conditions, we
expect our system to signal this fact.

6.3.3 What the Algorithm Actually Identifies: When the
algorithm was run using anthracnose as the chosen effect, the
algorithm returned no proven conditions. This means that there

are no combinations of factors that guarantee anthracnose. This
could be somewhat useful to a farmer or soybean researcher, but
the more interesting findings are when the algorithm was run
using the lack of anthracnose as the chosen effect. When the
lack of anthracnose was the chosen effect, 154,295
conditions were tested, resulting in the following proven
conditions:

[('temp_?',),
('precip_1',),
('temp_0',),
('precip_0',),
('~precip_2',),
('precip_?',),
('treatment_?',),
('temp_1', 'hail'),
('~temp_1', '~temp_2'),
('~temp_2', 'hail'),
('~temp_1', '~hail'),
('temp_2', '~hail'),
('~treatment_0', '~treatment_1', '~treatment_2')]

Since many of the predicates were implemented with one-hot

encoding (See diagram 1), some of these conjunctions should be
ignored (an underscore in the attribute name ex: temp_1,
signifies that one-hot encoding was used). Some of these should
be ignored because they are an artifact of one-hot encoding. For
example, if we know that temperature is not high and not
normal, we know that it must either be low or unknown, and this
logical entailment in itself says nothing about the data set itself.

The principal takeaways from the output are that anthracnose
never occurs under the following conditions: there is normal or
less than normal precipitation, the temperature is less than
normal, the temperature is normal and there is no hail, the
temperature is greater than normal and there is hail or when the
treatment is unknown. The treatment being unknown is odd
since one might assume the data collectors would have that
information, but it is unlikely to provide any useful information
for this so it will be ignored for the analysis. One thing that
should be considered when analyzing these results is that
anthracnose is known to occur during warm, wet, and humid
conditions. This only bolsters our results, since our algorithm
showed that low temperature prevents anthracnose, and it only
occurs when there is greater than normal precipitation. Since
this is already known, we have shown the algorithm’s ability to
discover causal regularities.

7 Time Complexity Analysis

7.1 Algorithm Analysis

The algorithm is made up of 3 main parts: reading the dataset,
generating possible MINUS conditions, and verifying or

94 IJCA, Vol. 29, No. 2, June 2022

discarding all the possible MINUS conditions. Reading the
dataset iterates over all predicates (P) and all data points (n).
This gives a total time of O(nP).

When the algorithm generates the potential MINUS
conditions, it does the following for every data point; prepares
the dataset for analysis O(P), finds the set of all subsets from the
data point’s set of predicates O(2𝑃𝑃), and adds the members of
this set to the set of all potential MINUS conditions O(2𝑃𝑃).
Since there are n data points, generating MINUS conditions is
O(n(P+2𝑃𝑃 + 2𝑃𝑃)) which is equivalent to O(n2𝑃𝑃).

Establishing or rejecting each MINUS condition iterates over
the set of all potential MINUS conditions, which can be as large
as 2𝑃𝑃. For each of these potential MINUS conditions, we check
that it is not a superset of any proven MINUS condition.
Iterating over all proven MINUS conditions can be as large as
O(2𝑃𝑃). Then each MINUS condition that survives this
winnowing is checked against every datapoint. This takes
O(n𝑃𝑃2) time for each potential condition it checks. The total
time for this section is O(2𝑃𝑃(2𝑃𝑃 + 𝑛𝑛𝑃𝑃2)) which is equivalent to
O(22𝑃𝑃). However, since there are often a much smaller number
of verified MINUS conditions in a real dataset, in practice the
upper bound is often O(n𝑃𝑃22𝑃𝑃).

Combining all these sections results in a final time complexity
of O(22𝑃𝑃). However, in practice this is closer to O(n𝑃𝑃22𝑃𝑃).

7.2 Theoretical Minimum Time Complexity

This section calculates the maximum possible set of proven
MINUS conditions. If it is assumed that an algorithm takes O(1)
time to compute and output each MINUS condition, this yields
a theoretical lower bound for an algorithm that generates
MINUS conditions. However, such an algorithm would be
unrealistic, so this will only be used as a way to analyze the
algorithm described in this paper.

By way of proof, there are 𝑃𝑃
𝑃𝑃/2

 sets in the largest set of MINUS
conditions. Since each one of these sets is no larger than P-1, if
it takes O(1) to generate and output each part of each MINUS
condition, the total time complexity would be O(P 𝑃𝑃

𝑃𝑃/2
). P 𝑃𝑃

𝑃𝑃/2
can

be expanded to 𝑃𝑃(𝑃𝑃!
(𝑃𝑃/2)!(𝑃𝑃/2)!

). Using Stirling’s approximation,

P! is equivalent to √2𝜋𝜋𝑃𝑃(𝑃𝑃
𝑒𝑒

)𝑃𝑃 as P approaches infinity.
However, it is more accurate to find the upper and lower bound
of P 𝑃𝑃

𝑃𝑃/2
 using the upper and lower bound of Stirling’s

approximation. For the upper bound, the numerator will use the
upper bound of Stirling’s approximation 𝑒𝑒𝑃𝑃𝑃𝑃+1/2𝑒𝑒−𝑃𝑃, and the
denominator will use the lower bound of Stirling’s
approximation

√2𝜋𝜋(
𝑃𝑃
2

)
𝑃𝑃+1
2 𝑒𝑒−

𝑃𝑃
2

This will maximize the approximation of P 𝑃𝑃
𝑃𝑃//2

. Substituting
these upper and lower bound approximations yields

𝑃𝑃
𝑒𝑒𝑃𝑃𝑃𝑃+1/2𝑒𝑒−𝑃𝑃

(√2𝜋𝜋(𝑃𝑃
2

)
𝑃𝑃+1
2 𝑒𝑒−

𝑃𝑃
2)2

Distributing the exponent in the denominator gives

𝑃𝑃
𝑒𝑒𝑃𝑃𝑃𝑃+1/2𝑒𝑒−𝑃𝑃

2𝜋𝜋(𝑃𝑃
2

)𝑃𝑃+1𝑒𝑒−𝑃𝑃

Canceling out 𝑒𝑒−𝑃𝑃 , moving 2𝑃𝑃+1 to the numerator and
simplifying gives 𝑒𝑒

𝜋𝜋
√𝑃𝑃2𝑃𝑃. Following the same process but with

the lower bound of Stirling’s approximation in the numerator
and the upper bound in the denominator yields the lower bound
for P 𝑃𝑃

𝑃𝑃/2
. This lower bound is

2√2𝜋𝜋
𝑒𝑒2 √𝑃𝑃2𝑃𝑃

Since both the upper and lower bound are O(√𝑃𝑃2𝑃𝑃), the time
complexity of this theoretical algorithm is O(√𝑃𝑃2𝑃𝑃).

As mentioned previously, this theoretical algorithm is
unrealistic since it can find each MINUS condition in O(P) time,
and it does not account for the number of data points. With this
in mind, the algorithm described in this paper is mathematically
O(22𝑃𝑃), but in practice is closer to O(n𝑃𝑃22𝑃𝑃). Both algorithms
take exponential time which shows that the algorithm described
in this paper is within the same time complexity class as the
theoretical minimum.

8 Conclusion

The identification of causal relationships in datasets can be
very illuminating. There have been various approaches to the
notion of causality, and through research and experimentation
we have built upon these approaches to create a well-rounded
algorithm for identifying causal relationships.

As shown in the results portion, we have proved that our
algorithm successfully identifies singular and conjunctive
conditions that serve as possible causes for a chosen event. The
three datasets we have discussed exhibit the key features of why
our algorithm is useful in finding these causal relations and also
evidence of the accuracy of the algorithm that we have
composed. The soybean dataset test illustrates the importance
of finding causes for the inverse of an event and also illuminates
the fact that our algorithm cannot distinguish between causes
and symptoms of an effect. The algorithm finds correlations,
but it is up to the user to only include things that would be causes
and not symptoms, or the user would have to manually analyze
the output and determine its likelihood of being a cause or
symptom.

The causal regularities that the algorithm generates are
reliably predictive because they are only produced if there is

IJCA, Vol. 29, No. 2, June 2022 95

certainty, they will hold for a given data set. This predictive
capability arouses a comparison to machine learning, arguably
the most popular method for an algorithmic approach to
prediction. Two of the biggest problems with machine learning
are the need for lots of data, and the inability to see why a trained
model makes a decision. Our algorithm doesn’t suffer from
either of these problems, but still creates causal regularities that
can be used to make accurate predictions. More data is always
useful for better prediction for both machine learning and our
algorithm, but our algorithm requires a much smaller amount to
get meaningful results. Even with only 20 examples of plants
with anthracnose (a much too small amount for any standard
machine learning algorithm) we were able to find useful
information about the causes of anthracnose, and how to prevent
it with certainty.

Another advantage of this algorithm is its ‘white box’
character; that is, it is straightforward to reconstruct the results
obtained. This is useful for a dataset like the heart disease
dataset because knowing the conditions and conjunctions of
conditions that may cause heart disease can help individuals
seek help sooner and also take care of their health in order to
prevent themselves from being diagnosed with heart disease.
Because we know that the causal regularities we generate will
always hold true for the given dataset, then if we are confident
that the dataset is fully representative of the problem, we will
only generate ironclad predictions that will almost certainly
always hold true.

Other methods of prediction can be effective for large datasets
that don’t require human understanding, but our algorithm can
use small datasets to create precise predictions that are easily
interpretable. Outside of prediction, our algorithm is also able
to discover unknown properties in these datasets, generating
new knowledge that other approaches could not gain.

9 Future Work

This implementation is open to sundry developments. First,
to be a habitable system, a more congenial user interface is
advisable. In addition, a redesign of the basic search for MINUS
conditions along the lines of the A Priori algorithm for frequent
item sets in market basket analysis would be possible. This A
Priori approach would cut down on mathematical time
complexity by a power of 2. However, in practice, this decrease
in time complexity would be significantly lower. Beyond these
matters of performance and cosmetic ease of use, its
functionality might be augmented in several ways:

1. First, at present the algorithm detects MINUS conditions,
i.e., conjunctions of conditions which are sufficient for
the effect. It also assembles all such conditions such that,
in the input data set, their disjunction is collectively
necessary, i.e., one such conjunction must be present for
the effect to occur. The algorithm does not explore the
relative importance of each individual conjunct.
Although most theories of causal regularity do not
provide much guidance, we sense the possibility of
isolating events of particular importance through

abstraction; that is, two attributes may be instances of the
same abstraction, and might be consolidated into a single
event type. For example, if the data set has three
attributes ‘is colorless,’ ‘is green,’ ‘is blue,’ and it turns
out that the conjunction of ‘is green’ and ‘is blue’ figures
in a MINUS condition, it might be abstracted to the
simpler ‘is colored’.

2. Metrics analogous support and confidence such as are
found in itemset mining are appropriate and potentially
useful. The algorithm will reliably organize the data into
the conjunction of MINUS conditions, but they may
apply only to a few data points and hence have little
predictive force. Measure so confidence might be
appropriate if we relax the stipulation that MINUS
conditions are identified only if they have complete
predictive power.

3. The existence of unknown values for certain predicates
and objects, arouses the possibility of suggesting
experimental designs. For example, discerning that a
known positive or negative value for a given attribute
would establish an additional causal hypothesis, could be
useful in exploring the phenomenon summarized in the
given data set. Also, discovering that the elimination of
an attribute with many unknown values might lead to
more definitive results could lead to greater insight into a
data set.

References

[1] Michale Baumgartner, “Regularity Theories Reassessed,”
Philosophical, 36:327-354, 2008.

[2] Micheal Baumgartner, “Uncovering Deterministic Causal
Structure: A Boolean Approach,” Synthese, 170(1):71-96,
2009.

[3] Mathieu Beirlan, Bert Leuridan, and Frederik Van De Putts,
“A Logic for the Discovery of Deterministic Causal
Regularities,” Synthese, 195:367-399, 2008.

[4] G. Graßhoff and M. May, “Causal Regularities, W. Spohn,
M. Ledwig, and M. Esfield (Eds.) Current Issues in
Causation, Paderborn: Mentis, pp. 85-214, 2001.

[5] J. L. Mackie, “Causes and Conditions,” American
Philosophical Quarterly, American Philosophical
Quarterly, 2(4):245-264, Oct. 1964.

[6] J. L. Mackie, The Cement of the Universe: A Study of
Causation, Oxford: Clarendon Press, 1984.

[7] J. S. Mill, A System of Logic, London: John W. Parker,
1843.

[8] Judea Perl, Causality. Models, Reasoning and Inference,
Cambridge University Press, Cambridge, 2009.

Thomas Bidinger (photo not available) recently graduated with
baccalaureate degrees in Computer Science from Western
Washington University.

96 IJCA, Vol. 29, No. 2, June 2022

Hannah Buzard (photo not available) recently graduated with
baccalaureate degrees in Computer Science from Western
Washington University.

James Hearne (photo not available) is a Professor of Computer
Science at Western Washington University, where his research
is focused on the application of data mining and machine
learning techniques to the interpretation of ancient historical
records.

Amber Meinke (photo not available) recently graduated with
baccalaureate degrees in Computer Science from Western
Washington University.

Steven Tanner (photo not available) recently graduated with
baccalaureate degrees in Computer Science from Western
Washington University.

IJCA, Vol. 29, No. 2, June 2022 97

Integration of Multimodal Inputs and Interaction Interfaces for Generating
Reliable Human-Robot Collaborative Task Configurations

Shuvo Kumar Paul*

University of Nevada, Reno, NV, USA

Pourya Hoseini, Arjun Vettath Gopinath, Mircea Nicolescu, Monica Nicolescu†

University of Nevada, Reno, NV, USA

Abstract

As robots become more ubiquitous in our daily life, designing
natural, easy to use, and meaningful interaction interfaces
relevant to robotic tasks is vitally important as not only it can
enhance user experience, but also can increase task reliability
by proving supplementary information. This paper presents
a flexible framework that integrates two natural interaction
interfaces: speech, and pointing gesture with the sensor input
streams to generate reliable task configurations for human-
robot collaborative environment. The proposed framework
takes the RGB image as input to detect the objects present
in the scene and to recognize the pointing gestures, and it
computes the corresponding pointing direction in the 2D image
frame to infer the target object in the scene. At the same
time, verbal instruction is received from the audio input which
is then converted to text to either be fed into the proposed
neural model or to compare against predefined grammar rules to
extract relevant task parameters. All this information is used to
resolve any missing or ambiguous task parameters. Structured
task configurations are formed for the desired human-robot
collaborative tasks. The proposed framework shows very
promising results in integrating the relevant task parameters
for the intended robotic tasks in different real-world interaction
scenarios.

Key Words: Interaction interface; gesture recognition;
multimodal inputs; input integration; robotics; human-robot
interaction; natural language processing.

1 Introduction

Recent technological advances in automation, engineering,
and artificial intelligence have provided the impetus for the
rapidly accelerating robotics revolution. While in the past

*shuvo.k.paul@nevada.unr.edu
†hoseini,avettathgopinath@nevada.unr.edu;mircea,monica@unr.edu

few decades the number of industrial robots skyrocketed,
only recently robots are becoming more and more inclusive
in our daily life. The rapid advances in AI and robotics
have significantly shifted the focus of robotics research from
industrial robotics to service robots; these robots lend a
helping hand for tasks like cooking, cleaning, assistance,
companionship, education, and so on. In contrast to the
industrial robots, which repeatedly perform a specific task,
a service robot is expected to interact with humans while
performing tasks, and an ideal interaction should replicate a
human-to-human interaction.

Designing interaction interfaces that are more intuitive and
instinctive are prerequisites for ensuring the ease of use and
inclusion of robots in our daily life. However, to sustain this
inclusion, robots would need to build and maintain the trust of
the user, particularly the trust that the robot can reliably perform
a designated task. This warrants Human Robot Interaction
(HRI) framework that not only can establish a natural interaction
interface, but also can supplement the robotic task execution
with additional data to make it more reliable.

Robotic entities are set to become an essential part of modern
society and have the potential to shape our social experience.
However, the inclusion of robots in our daily life will be
dictated by one key factor: our trust in robots, specifically, the
confidence of the human user that a robotic agent can accurately
perform a task. To build and maintain this trust, it needs to be
made sure that the robots can consistently execute the tasks in a
proper manner.

Proper execution of robotic tasks requires instructions
containing a set of parameters that defines a task configuration.
We have identified two essential properties of a complete task
configuration:

1. The task configuration needs to have all the relevant task
parameter information for executing an intended task.
Depending on the task, the task configurations can have
different task parameters e.g. navigational task may only
require the direction, while an assisting task may involve

ISCA Copyright© 2022

98 IJCA, Vol. 29, No. 2, June 2022

knowledge of object(s), their attributes and locations in the
environment, order of task information, etc. The relevant
task parameters can be extracted from the robot sensors and
filtered to form a set of structured instructions that can be
correctly interpreted by the robotic entity.

2. The task configurations should be reliable enough for
intended task execution. The robot may follow the
instruction accordingly, but the instruction itself may
contain erroneous task parameters; for instance, the robot
may start moving toward its left, while the intended
instruction was to turn left. This can result either from the
noisy sensory data or ambiguities during task parameters
extraction. To address this, the instructions need to be
cross-validated to ascertain the intent of the user which can
be done by integrating sensory information with different
human robot interaction interfaces.

The first property is sufficient for executing a robotic task,
however, the second property provides more assurance for
the validity of the task configurations. Subsequently, if
required task parameters can not be inferred from sensor input
streams, then the interaction interfaces can be used to determine
and/or verify the task parameters and vice versa. Although,
achieving the second property may not be viable for every
task configuration, verifying instructions from multiple input
streams and interaction interfaces should definitely be one
of the objectives in collaborative HRI design as it will help
generate more reliable task configurations. More reliable task
configuration would aid in proper task completion, which would
help build more trust in robots as well.

Natural human interactions mostly involve gestures, speech,
and facial expressions. Amongst these interaction interfaces,
gestures and particularly pointing gestures are probably the
most natural for humans and can serve as an effective device
to convey a simple message or a command to the robot.
Unlike speech, pointing gestures are not suitable for conveying
sophisticated information; however, it provides with a more
natural interface for simpler instructions that can be relayed
even in noisy environments. Moreover, it provides the
possibility of specifying objects and their locations intuitively
and can be used as simple but meaningful commands. In
addition, distinct human gestures represent specific information
that can be used to convey the general intent of the user. This
inferred intent information then can be compared or matched
to predefined gesture configuration to provide additional
information or appropriate command for the robot to execute
certain tasks.

At the same time, speech can be used as a natural medium
to express intricate commands which can then be used to
effectively apply modern Natural Language Processing (NLP)
techniques to parse and extract language information. Proper
utilization of natural language can permit for a more intrinsic
and faster dialogue between human and the robot. However,
natural language communication needs to be translated into
a formal language which the robot can process and make a
decision upon. Subsequently, the robot needs to formulate a

structured message for the successive communication which
needs to be transformed into natural language to allow the user
for easier comprehension.

Gestures information can simultaneously be integrated
with verbal communication (speech recognition) to provide
auxiliary information to further disambiguate natural language
commands.

In our work, we focused on integrating two interaction
modalities: 1) pointing gesture that can be used to direct
the attention of the interacting robot toward an object or
a certain location in the scene, and 2) verbal commands
which are translated into simpler formal languages that are
more interpretable for the robot; both of these are natural
interaction interface for humans. Additional data containing the
information of detected objects in the scene is also passed to the
system to find and locate the Object of Interest (OOI). OOI is
the object that is requested by the human user to be manipulated
by the robotic entity.

We propose a simple and reliable HRI framework that
extracts a set of information from verbal instructions retrieved
from the audio input, detects pointing gestures, estimates the
general pointing direction and the object being pointed at
from individual RGB frames, and finally, assigns them to the
appropriate task parameters which then can be used to formulate
structured instructions. We have focused primarily on simpler
but more common collaborative task instructions targeting
scenarios where a user provides navigational instructions e.g.
"go to your right", "go there", etc. or commands that require
object manipulation e.g. "give me the bowl", "bring that red
book", etc. The task configuration has the following parameters:
a: action, o: general object, r: object attribute, p: position
of the object in the scene, d: general pointed direction, op:
estimated pointed object. These extracted parameters can be
used to generate a formal task description targeting a specified
goal. Our approach relies on Google’s speech to text API and
the skeletal joint points extracted by AlphaPose [5, 15] from the
RGB image to infer gesture.

The main contributions of this paper are of three folds:
1. We present a gesture recognition system that estimates

whether the user is performing a pointing gesture and the
pointing direction.

2. We leveraged a verbal command comprehension system to
extract certain information from a user command relevant
to specific robotic tasks by a) deep multi-task learning
model and b) matching to pre-defined language patterns.

3. We have implemented an object detection and pose
estimation system using template matching technique
suitable for fast prototyping and demonstrated how the
pointing gesture framework coupled with the extracted
information from verbal command can be used to generate
a list of task configurations corresponding to a sequence of
tasks.

This paper is outlined as follows: in the next section,
we provide a brief overview of previous work on gesture
recognition techniques and natural language understanding in

IJCA, Vol. 29, No. 2, June 2022 99

HRI design. Next, we describe the methodology of our work in
detail. The following chapters include our evaluation including
experimental results and observations. Finally, we conclude this
paper by summarizing our work.

2 Literature Review

A large body of work has been published in the area of
HRI that focuses on pointing gestures and natural language
understanding. In the following sub-sections, some of the
previous works have been discussed.

2.1 Pointing Gesture Recognition

Early pointing gesture interfaces were built with the help of
wearable devices e.g. glove-based devices [25, 8]; Dipietro et
al. [2] surveyed Data-GLove like systems and their application
for gesture recognition. Kahn et al. [10, 11] introduced Perseus
architecture which operated on several feature maps (intensity,
edge, motion, disparity, color) to locate pointed objects by
interpreting the pointing gestures. With the continuing advances
in computer vision, gesture recognition research shifted more
toward vision-based methods. Kadobayashi et al. presented
VisTA-Walk, a gesture interpreter which could only infer left
or right; it uses the output recognition result of Pfinder [32]
which employed a multiclass statistical color and shape model
to derive a 2D representation of head and hands from a wide
range of viewing conditions. With the introduction of stereo
cameras, multi-cameras, time-of-flight (TOF) cameras, or depth
cameras like Kinect, Intel RealSense, etc. researchers were
able to come up with different approaches for solving pointing
gesture detection. [30, 12] used multi-camera setup while [3]
used TOF camera to segment body, localize forearm and elbow
for gesture detection, and subsequently used Gaussian Process
Regression for pointing direction estimation.

Different Hidden Markov Model (HMM) have been used to
detect pointing gestures. Wilson et al. [31] proposed parametric
HMM for recognition, representation, and interpretation of
parameterized gestures, such as pointing gestures. Jojic et al. [9]
used only the dense disparity maps for gesture detection, while
Nickel et al. [20] calculated the dense disparity maps to track the
positions of a person’s face and hands together with an HMM-
based approach for detecting pointing gestures. Park et al. [21]
applied Cascade HMM and particle filters but depended on a
large number of HMM states for accurate gesture recognition
which required large amounts of training data and thus, incurred
higher processing time.

Richarz et al. [27] used Gabor wavelets to extract features
and multilayer perceptron to approximate pointing direction
estimator, but it was sensitive to pose variations. Pateraki
et al. [22] exploited the prior information of the location of
possible pointed targets and used the Dempster–Shafer theory
of evidence to fuse the estimated head pose and hand pointing
orientation information to locate the pointed target.

Rautaray et al [26] extensively reviewed hand gesture

recognition and pointed out the well known limitations of the
leading technologies related to the field.

In our work, we used the estimated (pixel) location of the
forearm joints (elbow and wrist) of the user to 1) determine
whether the person is performing the pointing gestures and 2)
infer the general direction the user is pointing e.g. left, right,
straight and estimate the pointing direction by computing the
line that goes through the arm joints.

2.2 Natural Language Understanding in HRI

Natural language based interaction has been explored in
various human-robot interaction tasks that include instructing
the robot with direction for navigation, commanding for
performing certain robotic tasks, specifying the object to
manipulate, etc. Natural language understanding is also used
as a modality along with other sensory information like vision
to disambiguate human instructions or the scene configuration
in general.

Kollar et al. [13] presented a system that infers the probable
path for an agent by taking the environmental geometry and
the detected objects as inputs along with the extracted sequence
of spatial description clauses from the linguistic information.
Matuszek et al. [18] investigated statistical machine translation
techniques to follow natural language route instructions within
a tractable manner. Macmohan et al. [17] introduced MARCO,
an agent that infers implicit actions from knowledge of
linguistic conditional phrases and spatial action information
along with environmental configuration. This method performs
the explicit, implicit actions required to reach the instructed
state, and subsequently executes exploratory actions to learn
about the environment. In [29] an approach was introduced
to automatically generate a probabilistic graphical model
with respect to the hierarchical and compositional semantic
structure of natural language navigation or mobile manipulation
commands.

Dzifcak et al. [4] proposed an integrated robotic architecture
that translates natural language instructions incrementally and
simultaneously generating logical goal representation and
action language, which can be further analyzed to measure
the achievability of the goal as well as to create new
action scripts targeting specified goals. Kuo et al. [14]
demonstrated that the combination of a hierarchical recurrent
network with a sampling-based planner can be utilized to
generate a model that learns to understand a sequence of
natural language commands in a continuous configuration
space. The use of spatial relationships to establish natural
communication mechanism between humans and robots was
investigated in [28]; a multimodal robotic interface comprising
of linguistic spatial descriptions and other spatial information
extracted from an evidence grid map was used to show how this
information can be used in a natural, human-robot dialog. [1]
described a robotic architecture featuring a planner that utilized
discovered information by learning the pre and post conditions
of previously unknown action sequences from natural language

100 IJCA, Vol. 29, No. 2, June 2022

construction.
We have leveraged the recent natural language processing

methods in our work to retrieve text from speech, generate
grammatical patterns to match, and extract relevant command
information from the user.

3 Methodology

The system receives gesture information and verbal
communication from an RGB image, and an audio input stream
respectively. The speech in audio is converted to text to
further extract the action instruction and the object information
corresponding to the robotic tasks. RGB image is used for
pointing gesture recognition, pointed direction estimation along
with object detection, and pointed object prediction. The
overview of the system architecture is illustrated in the Figure 1;
the green boxes indicate the extracted task parameters.

3.1 Information Extraction from Verbal Commands

In the course of a typical human-to-human collaborative
interaction, the instructions that the participants interchange
usually consists of a set of particular information; this includes
the action to be performed, the object of interest, direction
information for navigation, location of interest in the scene, etc.
Furthermore, humans generally describe an object in terms of
a general color, pattern, shape, size, and the relative position to
disambiguate [24], e.g., "bring that red shirt", "The book on the
left", "take the small box", etc. This information defines certain
parameters of a task. We have developed two techniques: 1)
neural network model, 2) natural language pattern matching, to
extract the task parameters from verbal commands. These two
approaches are outlined in the following sub sections.

3.1.1 Neural Network Model. For our work, we
generated a dataset for collaborative robotic commands.
Subsequently, we considered 8 different architectures for
training our model and found single layer Bi-directional Long
Short Term Memory (Bi-LSTM) based model to be optimum.
As our goal was to extract multiple task parameters from
the verbal commands, we formulated deep multi-task learning
model. Multi task learning (MTL) is a sub-division of
machine learning, where multiple tasks are jointly learned by
a shared model. Deep multi task learning tries to produce a
generalized representation that are powerful enough to be shared
across multiple tasks; here, each task denotes a multi-class
classification.

Dataset: We generated a dataset of commands where each
of the commands contains action information, and information
about one or more of the following three things: object name,
object color, and object size. The dataset contains 60769
samples, each of which has four labels.

Model Architecture: The model contains three neural
layers: an embedding layer, a Bi-LSTM layer, and a fully

connected layer. Let’s assume the vocabulary length of the
dataset is V, then every word is represented with a one-hot
encoding of size W ∈ R1×V. The input sequences or sentences
each contains n elements or words. These inputs are fed into an
embedding layer E .

An embedding is a mapping of a discrete or categorical
values to a vector of continuous numbers. A neural netwrok
embedding provides a low-dimensional, learned continuous
vector representations of these discrete variables. The key
advantage of neural network embeddings is that they can reduce
the dimensionality of categorical variables to represent them in
the transformed space. E ∈ RV×d, where d << V denotes the
lower dimensional embedding vector; this lower dimensional
vector is then passed to the Bi-LSTM layer.

LSTMs [7] are a particular form of Recurrent Neural Network
(RNN). LSTM (or Bi-LSTM) are ideal for sequential data such
as text, speech, video, audio, etc. Our key motivation for
choosing Bi-LSTM is that it can make use of both the past and
future context information of a sentence, and can learn long-
term temporal activities as well as avoid exploding or vanishing
gradient that the traditional RNN suffers from during the back
propagation optimization. In Figure 2, fi and bi denote forward
and backward LSTM respectively.

The output of the Bi-LSTM cells are concatenated and fed
into the four fully connected (FCN) layers. Finally, the output
of the FCN layers goes through softmax activation to classify
four task parameters. For each classifier, we measured the
Cross Entropy loss Lc and used the mean of these losses Lm =
1
4 Σ4

c=1Lc to update our model.

3.1.2 Natural Language Pattern Matching. A set of
language patterns can provide sufficient information about the
parameters of collaborative interaction while excluding other
verbal communications that may not contain a command. The
language patterns are arranged in Table 1. These patterns
are represented in terms of regular expressions with different
language elements as terms. The angled brackets(<>) encloses
each term. The terms with capital letters indicate different
language elements, while the exact words are enclosed within
quotes. An array of words, surrounded by square brackets e.g.
[”right”, ”left”, ”front”, ”back”], specifies only one of them
needs to be present. The symbols after each term e.g. +, ?, * are
the quantifiers that represent how many times the preceding term
needs to be matched; + indicates the term needs to be matched
1 or more times, * means 0 or more, ? means 0 or 1, and if there
are no quantifiers then the preceding term needs to be matched
exactly once.

The Action pattern extracts the general task needed to
be executed; simultaneously, it can distinguish between a
traditional instructive command and a non-instructive verbal
communication. The Object pattern is almost similar to Action
pattern except for that it needs to match with a NOUN at the
end which would contain the name of the object. The Attribute
pattern identifies certain visual characteristics of the object and

IJCA, Vol. 29, No. 2, June 2022 101

Figure 1: System architecture

Figure 2: NN model for parameter extraction from verbal commands.

102 IJCA, Vol. 29, No. 2, June 2022

– bring that

– bring that book

– bring the red book

– bring the red book on the left

Figure 3: Green box represents the task action; red box indicates
the location of the object in the scene; yellow and
blue boxes specify the object of interest and the
corresponding attributes

the Position pattern determines the general location, both of
which can be utilized as identifiers/specifiers to disambiguate
objects that fall into similar categories. Figure 3 presents a set
of sample instructions iterated with additional information and
illustrates the retrieved relevant information as well.

3.2 Pointing Gesture Recognition

AlphaPose [5] was used to extract the skeletal joint locations
to predict the pointing gestures and the general pointing
direction. For simplicity, we assumed the user is using one
hand at a time for pointing. Park et al. [21] categorized
the pointing gestures into large and small pointing gestures,
which we labeled them as extended (Figure 4(a, b)) and bent
(Figure 4(c, d)) arm gestures. Additionally, for the pointing
gesture, the forearm’s relative direction with respect to the body
can be generalized in three categories: across (Figure 4(b, d)),
outward (Figure 4(a, c)), and straight (Figure 5(b)).

For across and outward pointing gestures, we can simply
measure the angle θa (Figure 5(a)) of each forearm with respect
to a vertical line and compare it to some smaller angle threshold
θt to determine whether the user is performing the pointing
gesture or not. In other words, if the user is not pointing
(Figure 5(b)) then the forearm would produce a smaller angle
compared to when the user is pointing. However, if the
user points straight with respect to the camera (robot’s vision)
(Figure 5(c)), the angle would be close to 0 and to address
this, we measured the ratio of the lengths of the forearms ρa;
intuitively, if the user is not pointing, the lengths of the detected
forearms should be virtually the same (Figure 5(c)), but if one of
the forearm’s length is significantly shorter than the other, it can
be assumed that the user is pointing straight (or its proximity)
toward the camera using that corresponding arm (Figure 5(b)).
Furthermore, the general direction d of pointing was determined
from the relative position of the wrist and the elbow of the
pointing arm to supplement navigational command.

3.2.1 θa Calculation from Wrist and Elbow Location.
From the extracted skeletal joints’ locations, only the following
joints were needed: left elbow, left wrist, right elbow, and right
wrist. This means even if some body part is occluded, our

(a) Extended outward (b) Extended across

(c) Bent outward (d) Bent across

Figure 4: Gesture categories

approach should still work as long as pointing hand’s joints
are detected. Let us define the skeletal joint coordinate of the
elbow as (x1,y1), the wrist as (x2,y2); the pointing 2D vector
centered at the origin can be defined as a⃗ = (x2 − x1,y2 − y1
and the vertical vector to compare with is set to v⃗ = (0,1). The
pointing angle θa is measured using equation 1.

θa = cos−1 a⃗ · v⃗
|a||v|

(1)

If θa > θt , then we consider the corresponding forearm is
performing the pointing gesture and subsequently, compare the
x coordinate of the wrist and the elbow to further detect the
general pointing direction towards the left or right of the scene
(across or away with respect to the body). Next, the ratio of the
length of the forearms ρa =

Length of the arm of interest
Length of the other arm is compared

against a ratio ρt to further decide whether the user is pointing
straight. We set 0.8 as the value of ρt and 15◦ for θt .

3.3 Object Detection

Our object detection module consists of two phases: (i)
feature extraction and matching, and (ii) homography estimation
and perspective transformation. In the following sections, we
will focus on the detailed description of the aforementioned
steps.

3.3.1 Feature Extraction and Matching. Our object
detection starts with extracting features from the images of the
planar objects and then matching them with the features found
in the images acquired from the camera. Image features are
patterns in images based on which we can describe the image.
A feature detecting algorithm takes an image and returns the
locations of these patterns - they can be edges, corners or interest
points, blobs or regions of interest points, ridges, etc. This
feature information then needs to be transformed into a vector

IJCA, Vol. 29, No. 2, June 2022 103

Table 1: Grammatical patterns for information extraction

Information Type Grammatical Pattern Example
Action <VERB><"me">?<DET‡ >?<["this", "that"]>?<ADJ§>*<>? bring me that; give me that book;bring it here
Object <VERB><"me">?<DET>?<["this", "that"]>?<ADJ>*<NOUN> take the red cup; bring me that dress

Attribute <ADJ>+<NOUN> red dress; large blue bowl
Position <["right", "left", "front", "back"]> the box on the left

(a) (b) (c)

Figure 5: (a) Generated angle θa , (b) length of forearms dl,drwhen not pointing, and (c) straight

space using a feature descriptor, so that it gives us the possibility
to execute numerical operations on them. A feature descriptor
encodes these patterns into a series of numerical values that
can be used to match, compare, and differentiate one feature
to another; for example, we can use these feature vectors to find
the similarities in different images to detect objects as well as
distinguish each object in the scene. Ideally, this information
should be invariant to image transformations e.g. change in
illumination of the scene, different degrees of image blur and
compression, variance in viewpoint, etc. However, every feature
detector and descriptor is unique and can be tolerant to certain
image transformations and to certain degrees. We selected
SIFT [16] as both the feature detector and descriptor for our
work as it provides reliable detection with adequate speed as
reported in [23].

Once the features are extracted and transformed into vectors,
we compare the features to determine the presence of an object
in the scene. Usually, the Nearest Neighbor algorithm is used
to find matches, however, finding the nearest neighbor matches
within high dimensional data is computationally expensive,
and with more objects introduced it can affect the process
of updating the pose in real-time. To counter this issue to
some extent, we used the FLANN [19] implementation of KD-
Tree Nearest Neighbor Search, which is an approximation of
the K-Nearest Neighbor algorithm that is optimized for high
dimensional features. Finally, if we have more than ten matches,
we presume the object is present in the scene.

‡DET refers to the determinant i.e. "the"
§ADJ refers to adjective part of speech e.g. small, red, etc.

3.3.2 Homography Estimation and Perspective
Transformation. A homography is an invertible mapping
of points and lines on the projective plane that describes a
2D planar projective transformation (Figure 6) that can be
estimated from a given pair of images. In simple terms, a
homography is a matrix that maps a set of points in one image
to the corresponding set of points in another image. We can use
a homography matrix H to find the corresponding points using
equation 2 and 3, which defines the relation of projected point
(x
′
,y
′
) (Figure 6) on the rotated plane to the reference point

(x,y).
A 2D point (x,y) in an image can be represented as a 3D

vector (x,y,1) which is called the homogeneous representation
of a point that lies on the reference plane or image of the planar
object. In equation (2), H represents the homography matrix
and [x y 1]T is the homogeneous representation of the reference
point (x,y) and we can use the values of a,b,c to estimate the
projected point (x

′
,y
′
) in equation (3).

a
b
c

= H

x
y
1

=

h11 h12 h13
h21 h22 h23
h31 h32 h33

x
y
1

 (2)

x
′
=

a
c

y
′
=

b
c

(3)

We estimate the homography using the matches found from
the nearest neighbor search as input; often these matches
can have completely false correspondences, meaning they

104 IJCA, Vol. 29, No. 2, June 2022

Figure 6: Object in different orientations from the camera

don’t correspond to the same real-world feature at all which
can be a problem in estimating the homography. So, we
chose RANSAC [6] to robustly estimate the homography by
considering only inlier matches as it tries to estimate the
underlying model parameters and detect outliers by generating
candidate solutions through random sampling using a minimum
number of observations.

While the other techniques use as much data as possible
to find the model parameters and then pruning the outliers,
RANSAC uses the smallest set of data point possible to estimate
the model, thus making it faster and more efficient than the
conventional solutions. This estimated homography can also
be effectively used for the planar pose estimation of textured
objects [23].

3.4 OOI Estimation from Pointing Gesture

For each detected object, the bounding box can be defined as
a list of four 2D line segments BB = [s1,s2,s3,s4]; si is defined
by the following parametric equation:

si = (ai, tbi) =

(
Vi,

{
t(Vi+1−Vi) if i < 4,
t(V1−Vi) else

)
(4)

where, Vi represents the ith(1 ≤ i ≤ 4) vertex of the quadrangle
bounding box, 0 ≤ ti ≤ 1, and the value of ti determines the
location of a point on the segment; if ti = 0 then it’s the initial
point and if it’s equal to 1 then it’s the final point in the segment
(Figure 7). Additionally, the center of each detected object is
computed by taking the average of the four vertices.

Similarly to equation 4, we can estimate the pointing
direction by computing a 2D line from the pixel location of the
arm joints (equation 5).

lp = ((x1,y1), t(x2− x1,y2− y1)) = (ap, tbp) (5)

where, lp denotes the pointing direction in the image frame,
(x1,y1),(x2,y2) corresponds to the 2D pixel locations of the
elbow and the wrist respectfully, and −∞ < t <+∞.

For each si we can solve for t using equation 6 and find
the intersecting point pi = ai + tibi. Next, the distance from

Figure 7: Visualization of the parametric equation of a segment

the object center to each corresponding intersecting point
is measured and the minimum distance δ is computed and
specified as the object distance δ . Algorithm 1 lists the steps
for computing minimum distance δ for each detected object.
Object with the least δ is estimated to be the pointed object.

ti = (ap−ai)×
bp

bi×bp
(6)

Algorithm 1: Minimum distance computation given 2D
pointed vector and object boundary vertices

1 MinimumObjectDistance (lp,V);
Input : lp is the 2D pointing vector

V is a list of vertices representing
the bounding box

Output: δ least distance from the object center
2 /* C is the center of the object */

3 C = 1
4

4
∑

i=1
Vi

4 δ = null
5 for i = 1 to 4 do
6 si←− equation 4
7 ti←− equation 6
8 pi← ai + tbi
9 d = ||pi−C||

10 if δ == null or d < δ then
11 δ = d
12 end if
13 end for
14 return δ

Algorithm 2 describes the steps for extracting relevant task
parameters.

4 Experimental Results

We set up experiments that involved the participants
performing a specific pointing gesture within a predefined
scenario. The scene contained three objects: two books, and
a cheez-it box, and the user could point at one object at a
given time. For instance, in one of the scenarios the user was

IJCA, Vol. 29, No. 2, June 2022 105

Algorithm 2: Task parameters extraction

1 ExtractTaskParameters (lp,O);
Input : I : RGB image

C : verbal command
Output: Parameters of a robotic task

2 [a,og, r,p]← extracted from C using the language
patterns arranged in Table 1

3 [O,BB]← detected object name and the corresponding
estimated boundary from image I

4 Jl ,Jr← Extract elbow and wrist joints location of left
and right forearm using AlphaPose

5 Estimate if the user is pointing and the pointing arm from
Jl ,Jr according to section 3.2

6 if user is pointing then
7 lp← compute the 2D pointing vector as described in

section 3.2.1
8 d← estimated general pointing direction
9 /* object with minimum distance is the estimated

pointed object op */
10 op =

argminV{(lp,V)|LeastOb jectDistance(lp,V),V ∈
BB}

11 return [a,og, r,p,os,d]
12 else
13 return [a,og, r,p]

instructed to point at the leftmost object by extending their right
hand; therefore, for this data sample, we know the user was
performing a pointing gesture using their right hand, pointing
to their left, and pointing at the rightmost object (leftmost from
user’s perspective). This information was set as the ground truth
for quantitative evaluation. The participants were positioned at
the center of the image frame and were instructed to point at
different parts of the scene. The pointing direction was labeled
as either away, across, or straight for the operating/directing
hand and "not pointing" for the other. These experiments were
carried out where the user was standing at 1.22, 2.44, 3.66, and
4.88 meters distance from the camera.

As our work depends on several modules, we have
decoupled them to evaluate how each of the modules performs.
These modules include extracting task parameters from verbal
commands, detecting the operating hand, estimating the
pointing direction, and predicting the object of interest. Finally,
we have presented the final result in terms of extracted task
parameters in a tabular form.

The system receives the verbal command and extracts the
parameters using the NLP techniques described in section 3.1.1
and 3.1.2. We examined RNN and LSTM based model each
with 4 different variants: bidirectional and non bidirectional;
1 and 2 layers. We found the single layer Bi-LSTM network
to be superior in performance. Figure 8 illustrates the superior
performance of the Bi-LSTM network compared to other neural
network architectures in terms of validation accuracy.

Figure 8: Validation accuracy

These parameters are stored so that each task can be executed
sequentially. Table 2 arranges different verbal commands
received from the user and the corresponding extracted task
parameters; if no matches found, the corresponding parameters
are set to None. Each command initiates a task and is stored
according to the order of task initiation (Table 3).

For each reliable frame, we compared the prediction with the
label and measured the accuracy, precision, and recall. For
a sample frame that has a label of "Right hand: pointing;
Left hand: not pointing", if the prediction is "Right hand:
pointing" then the sample is labeled as True Positive, else
False Negative, if the prediction is "Left hand: pointing" then
the sample is labeled as False Positive, else True Negative.
Table 4 tabulates the accuracy, precision, and recall for varying
distances. Figure 11 illustrates the system output for different
pointing scenarios.

Next, we experimented on scenarios where multiple objects
were placed on top of the table, each of which had predefined
attributes (Figure 9). Additionally, the participants were
instructed to point at a specific object. The system takes
this information along with the natural language instruction
to devise the task parameters and thereafter emits a follow-up
response in the presence of any ambiguities. Two example
scenarios are illustrated in Figure 10. Sample scenario
configuration along with extracted task parameters have been
arranged in Table 5. The Structured Information column
exhibits the information extracted from the Pointing State and
the Verbal Command. The first column indicates whether
the user was pointing or not, the second column enumerates
experiments (shortened to "Exp") for corresponding pointing
states, the third column lists different verbal commands with
fixed task action "bring", the fourth presents the extracted
information from the verbal commands and the simultaneous
pointing state, the fifth column arranges the predicted object
of interest (OOI) that needs the action to be performed upon,
and the sixth column tabulates the corresponding response
formulated by the system. Light blue cells indicate the presence
of ambiguity.

106 IJCA, Vol. 29, No. 2, June 2022

Table 2: Extracted task parameters from different verbal
commands

Verbal command: "give me the plate"
Object: plate | Action: give | Attributes: None | Position: None

Verbal command: "bring me that red cup"
Object: cup | Action: bring | Attributes: [red] | Position: None

Verbal command: "go left"
Object: None | Action: go | Attributes: None | Position: left

Verbal command: "grab the large green box on your right"
Object: box | Action: grab | Attributes: [green, large] | Position: right

Verbal command: "put the jar on the table"
Object: jar | Action: put | Attributes: None | Position: None

Table 3: Stored sequential task parameters

+====+========+========+================+==========+
| NO | Object | Action | Attributes | Position |
+====+========+========+================+==========+
| 1 | plate | give | None | None |
+====+========+========+================+==========+
| 2 | cup | bring | [red] | None |
+====+========+========+================+==========+
| 3 | None | go | None | left |
+====+========+========+================+==========+
| 4 | box | grab | [green, large] | right |
+====+========+========+================+==========+
| 5 | jar | put | None | None |
+====+========+========+================+==========+

Figure 9: Object attributes

Table 4: Pointing gesture recognition

Distance Accuracy Precision Recall
4.88 1 1 1
3.66 0.995 1 0.99
2.44 0.995 1 0.99
1.22 0.995 1 0.99

Ambiguity occurs when the OOI cannot be determined from
the given verbal command and pointing gesture; the system fails
to identify the object of interest and responds with the feedback
"Need additional information to identify object". Subsequently,
the system waits for the user to perform the pointing gesture
and/or amend the command; once these inputs are received, it
repeats the entire process.

From the Table 5 we can see, for the "Not Pointing"
state, ambiguity occurred when there was a lack of object
attribute(s) (Exp 1, 3) for uniquely identifying the OOI,
and thus, the system asked for additional information. For
the "Pointing" state, the ambiguity arises when the pointing
direction does not intersect with any of the object boundaries;
in these scenarios, verbal commands can alleviate the ambiguity
by providing additional information. Ambiguity can also arise
if the inferred objects from the extracted identifiers and the
pointing gesture are different. However, the system prioritizes
the object inferred from the pointing gesture as the speech-to-
text module may sometimes miss transcribe.

5 Conclusion and Further Research

In this paper, we have presented a HRI framework for
extracting human-robot collaborative task parameters taking
multiple inputs, and processing them simultaneously in real-
time. Verbal communication is used to extract intricate
information about the task e.g. action command, object
attributes, etc., which is supported by pointing gesture
recognition, the general direction along pointed object
estimation to facilitate a natural interaction interface for the user.
This information is assembled into a set of named parameters
and can then be further analyzed to form a structured command
that can be passed to and easily translated by a robotic entity.

We presented a pointing gesture recognition approach from
a 2D image frame that can detect the gesture, and estimate
the pointing direction and the pointed object in the scene.
We implemented a template matching based object detection
and planar pose estimation technique that provides information
about the object present in the scene. We have also devised
two approaches to extract the task information prevalent in
collaborative interactions. The verbal command is received
from the sensor and then converted to text to further match with
the previously formulated language patterns to extract relevant
task specific parameters. All this information is integrated to
form the final task configuration; if an essential parameter is
missing or there are ambiguities, the system responds with
appropriate feedback.

IJCA, Vol. 29, No. 2, June 2022 107

(a) Pointing to the object labeled "book-1" (b) Pointing to the object labeled "cheez-it"

Figure 10: Example scenarios where the user points to different objects while voicing the command "give me that"

(a) Pointing across with left hand (b) Pointing away with right hand

(c) No pointing (d) Pointing across with right hand

Figure 11: System output with different pointing scenarios

108 IJCA, Vol. 29, No. 2, June 2022

Table 5: Generated task parameters

Pointing State Exp # Verbal Command Structured information Identified Object Feedback

1 bring that, bring me that
{action: "bring", pointing_identifier: True, object: "book",

object_identifiers: {attributes: null, position: null}} "book-1" None

2 bring the red book
{action: "bring", pointing_identifier: True, object: "book",

object_identifiers: {attributes: "red", position: }} "book-2" None
Pointing

3 bring that red thing
{action: "bring", pointing_identifier: True,

object: null, object_identifiers: {attributes: "red", position: }} "cheez-it" None

1 bring that, bring me that
{action: "bring", pointing_identifier: False,

object: null, object_identifiers: {attributes: null, position: null}} None (ambiguous)
"Need additional information

to identify object"

2 bring the red book
{action: "bring", pointing_identifier: False,

object: "book", object_identifiers: {attributes: "red", position: null}} "book-2" None
Not Pointing

3 bring that red thing
{action: "bring", pointing_identifier: False,

object: null, object_identifiers: {attributes: "red", position: "right"}} None (ambiguous)
"Need additional information

to identify object"

We carried out experiments to measure the performance of
our pointing gesture recognition system at different distances
and it was able to recognize the state of the pointing gesture
with very high accuracy. Next, we investigated the formation
of the task configurations by passing different natural language
instructions along with different gesture states. We have
tabulated the extracted task parameters for different verbal
commands along with how the task instructions are stored in a
sequential list. Subsequently, we have illustrated the integration
of these sensor data and interaction information with sample
experimental results. Finally, we have listed the final task
configurations along with the system feedback for different
interaction scenarios.

The system can be further improved by introducing reliable
3D information. Having reliable depth information will
effectively eliminate these limitations. Furthermore, more
complex interaction scenarios comprising of multiple users and
more intricate dialogues can be investigated to further develop
more meaningful HRI systems.

References

[1] R. Cantrell, K. Talamadupula, P. Schermerhorn, J. Benton,
S. Kambhampati, and M. Scheutz, “"Tell Me When and
Why to Do It! Run-Time Planner Model Updates via
Natural Language Instruction",” in "Proceedings of the
Seventh Annual ACM/IEEE International Conference on
Human-Robot Interaction", 2012, pp. 471–478.

[2] L. Dipietro, A. M. Sabatini, and P. Dario, “"A Survey
of Glove-Based Systems and Their Applications",” "Ieee
Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews)", vol. 38, no. 4, pp. 461–482,
2008.

[3] D. Droeschel, J. St"uckler, and S. Behnke, “"Learning
to Interpret Pointing Gestures With a Time-of-Flight
Camera",” in "Proceedings of the 6th International
Conference on Human-Robot Interaction", 2011, pp. 481–
488.

[4] J. Dzifcak, M. Scheutz, C. Baral, and P. Schermerhorn,
“"What to Do and How to Do It: Translating

Natural Language Directives Into Temporal and Dynamic
Logic Representation for Goal Management and Action
Execution",” in "2009 IEEE International Conference on
Robotics and Automation". IEEE, 2009, pp. 4163–4168.

[5] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “"",” in "Iccv",
2017.

[6] M. A. Fischler and R. C. Bolles, “"Random
Sample Consensus: A Paradigm for Model
Fitting With Applications to Image Analysis and
Automated Cartography",” "Commun. ACM", vol. 24,
no. 6, pp. 381–395, Jun. 1981. [Online]. Available:
https://doi.org/10.1145/358669.358692

[7] S. Hochreiter and J. Schmidhuber, “"Long Short-Term
Memory",” "Neural Computation", vol. 9, no. 8, pp. 1735–
1780, 1997.

[8] S. Iba, J. M. V. Weghe, C. J. Paredis, and P. K. Khosla,
“"An Architecture for Gesture-Based Control of Mobile
Robots",” in "Proceedings 1999 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Human
and Environment Friendly Robots With High Intelligence
and Emotional Quotients (Cat. No. 99CH36289)", vol. 2.
IEEE, 1999, pp. 851–857.

[9] N. Jojic, B. Brumitt, B. Meyers, S. Harris, and T. Huang,
“"Detection and Estimation of Pointing Gestures in
Dense Disparity Maps",” in "Proceedings Fourth IEEE
International Conference on Automatic Face and Gesture
Recognition (Cat. No. PR00580)". IEEE, 2000, pp. 468–
475.

[10] R. E. Kahn and M. J. Swain, “"Understanding People
Pointing: The Perseus System",” in "Proceedings
of International Symposium on Computer Vision-Iscv".
IEEE, 1995, pp. 569–574.

[11] R. E. Kahn, M. J. Swain, P. N. Prokopowicz, and
R. J. Firby, “"Gesture Recognition Using the Perseus
Architecture",” in "Proceedings CVPR IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition". IEEE, 1996, pp. 734–741.

IJCA, Vol. 29, No. 2, June 2022 109

[12] R. Kehl and L. Van Gool, “"Real-Time Pointing Gesture
Recognition for an Immersive Environment",” in "Sixth
IEEE International Conference on Automatic Face and
Gesture Recognition, 2004. Proceedings.". IEEE, 2004,
pp. 577–582.

[13] T. Kollar, S. Tellex, D. Roy, and N. Roy, “"Toward
Understanding Natural Language Directions",” in "2010
5th ACM/IEEE International Conference on Human-
Robot Interaction (HRI)". IEEE, 2010, pp. 259–266.

[14] Y.-L. Kuo, B. Katz, and A. Barbu, “"Deep Compositional
Robotic Planners That Follow Natural Language
Commands",” in "2020 IEEE International Conference
on Robotics and Automation (ICRA)". IEEE, 2020, pp.
4906–4912.

[15] J. Li, C. Wang, H. Zhu, Y. Mao, H.-S. Fang, and
C. Lu, “"CrowdPose: Efficient Crowded Scenes Pose
Estimation and a New Benchmark",” "arXiv Preprint
arXiv:1812.00324", 2018.

[16] D. G. Lowe, “"",” "International Journal of Computer
Vision", 2004.

[17] M. MacMahon, B. Stankiewicz, and B. Kuipers, “"Walk
the Talk: Connecting Language, Knowledge, and Action
in Route Instructions",” "Def", vol. 2, no. 6, p. 4, 2006.

[18] C. Matuszek, D. Fox, and K. Koscher, “"Following
Directions Using Statistical Machine Translation",” in
"2010 5th ACM/IEEE International Conference on
Human-Robot Interaction (HRI)". IEEE, 2010, pp. 251–
258.

[19] M. Muja and D. G. Lowe, “"Fast Approximate Nearest
Neighbors With Automatic Algorithm Configuration",” in
"International Conference on Computer Vision Theory and
Application VISSAPP(’09)". INSTICC Press, 2009, pp.
331–340.

[20] K. Nickel and R. Stiefelhagen, “"Pointing Gesture
Recognition Based on 3d-Tracking of Face, Hands
and Head Orientation",” in "Proceedings of the 5th
International Conference on Multimodal Interfaces",
2003, pp. 140–146.

[21] C.-B. Park and S.-W. Lee, “"Real-Time 3D Pointing
Gesture Recognition for Mobile Robots With Cascade
HMM and Particle Filter",” "Image and Vision
Computing", vol. 29, no. 1, pp. 51–63, 2011.

[22] M. Pateraki, H. Baltzakis, and P. Trahanias, “"Visual
Estimation of Pointed Targets for Robot Guidance via
Fusion of Face Pose and Hand Orientation",” "Computer
Vision and Image Understanding", vol. 120, pp. 1–13,
2014.

[23] S. K. Paul, M. T. Chowdhury, M. Nicolescu, M. Nicolescu,
and D. Feil-Seifer, “"Object Detection and Pose
Estimation From RGB and Depth Data for Real-Time,
Adaptive Robotic Grasping",” in "Advances in Computer
Vision and Computational Biology". Springer, 2021, pp.
121–142.

[24] F. H. Previc, “"The Neuropsychology of 3-D Space.",”
"Psychological Bulletin", vol. 124, no. 2, p. 123, 1998.

[25] D. L. Quam, “"Gesture Recognition With a Dataglove",” in
"IEEE Conference on Aerospace and Electronics". IEEE,
1990, pp. 755–760.

[26] S. S. Rautaray and A. Agrawal, “"Vision Based Hand
Gesture Recognition for Human Computer Interaction: A
Survey",” "Artificial Intelligence Review", vol. 43, no. 1,
pp. 1–54, 2015.

[27] J. Richarz, A. Scheidig, C. Martin, S. M"uller, and H.-
M. Gross, “"A Monocular Pointing Pose Estimator for
Gestural Instruction of a Mobile Robot",” "International
Journal of Advanced Robotic Systems", vol. 4, no. 1, p. 17,
2007.

[28] M. Skubic, D. Perzanowski, S. Blisard, A. Schultz,
W. Adams, M. Bugajska, and D. Brock, “"Spatial
Language for Human-Robot Dialogs",” "IEEE
Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews)", vol. 34, no. 2, pp. 154–167,
2004.

[29] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee,
S. Teller, and N. Roy, “"Understanding Natural
Language Commands for Robotic Navigation and
Mobile Manipulation",” in "Proceedings of the AAAI
Conference on Artificial Intelligence", vol. 25, no. 1,
2011.

[30] H. Watanabe, H. Hongo, M. Yasumoto, and K. Yamamoto,
“"Detection and Estimation of Omni-Directional Pointing
Gestures Using Multiple Cameras.",” in "Mva", 2000, pp.
345–348.

[31] A. D. Wilson and A. F. Bobick, “"Parametric Hidden
Markov Models for Gesture Recognition",” "IEEE
Transactions on Pattern Analysis and Machine
Intelligence", vol. 21, no. 9, pp. 884–900, 1999.

[32] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P.
Pentland, “"Pfinder: Real-Time Tracking of the Human
Body",” "IEEE Transactions on Pattern Analysis and
Machine Intelligence", vol. 19, no. 7, pp. 780–785, 1997.

110 IJCA, Vol. 29, No. 2, June 2022

Shuvo Kumar Paul received his
M.S. in 2020 in computer science
and engineering from University of
Nevada, Reno. He completed his
B.S. from North South University,
Bangladesh. Before joining UNR,
he worked as a research associate
at the AGENCY lab (previously
CVCR). His research interests
include machine learning, computer
vision, computational linguistics, and

robotics

Pourya Hoseini received his Ph.D.
in 2020 and M.S. in 2017, both in
computer science and engineering
from University of Nevada, Reno.
He also received a M.S. degree
in 2011 and a B.S. in 2008 in
electrical engineering from Urmia
University and Azad University, Iran,
respectively. His research interests
are machine learning, computer

vision, and evolutionary computing.

Arjun Vettath Gopinath is currently
working as a Software Developer
at N2N Services inc. He graduated
with a degree in M.S. in Computer
Science and Engineering from the
University of Nevada, Reno in May
2021. He received his B.S. from
SCMS School of Technology and
Management, Kerala, India. His
interests are Machine Learning,
Human-Computer Interaction and
Software Development.

Mircea Nicolescu is a Professor of
Computer Science and Engineering
at the University of Nevada, Reno
and co-director of the UNR Computer
Vision Laboratory. He received
a PhD degree from the University
of Southern California in 2003, a
MS degree from USC in 1999, and
a BS degree from the Polytechnic
University Bucharest, Romania in

1995, all in Computer Science. His research interests include
visual motion analysis, perceptual organization, vision-based
surveillance, and activity recognition. Dr. Nicolescu’s research
has been funded by the Department of Homeland Security, the
Office of Naval Research, the National Science Foundation and
NASA. He is a member of the IEEE Computer Society.

Monica Nicolescu is a Professor
with the Computer Science and
Engineering Department at the
University of Nevada, Reno and is
the Director of the UNR Robotics
Research Lab. Dr. Nicolescu earned
her PhD degree in Computer Science
from the University of Southern
California (2003) at the Center for
Robotics and Embedded Systems.

She obtained her MS degree in Computer Science from USC
(1999) and a BS in Computer Science at the Polytechnic
University Bucharest (Romania, 1995). Her research interests
are in the areas of human-robot interaction, robot control,
learning, and multi-robot systems. Dr. Nicolescu’s research
has been supported by the National Science Foundation, the
Office of Naval Research, the Army Research Laboratory, the
Department of Energy and Nevada Nanotech Systems. In 2006
she was a recipient of the NSF Early Career Development
Award (CAREER) Award for her work on robot learning by
demonstration

IJCA, Vol. 29, No. 2, June 2022 111

ISCA Copyright© 2022

InFra_OE: An Integrated Framework for Ontology Evaluation

Narayan C. Debnath*, Archana Patel*, Debarshi Mazumder*, Phuc Nguyen Manh*, Ngoc Ha Minh*
Eastern International University, Binh Duong, VIETNAM

Abstract

Nowadays, ontologies are used everywhere to share
information semantically, and hence it is crucial to evaluate
before using them. Ontology evaluation becomes more
important when we have more than one ontology for a domain
and we have to choose one ontology from them. The existing
ontology evaluation approaches focus on only a few ontology
evaluation criteria. Therefore, they cannot determine the overall
quality of the ontology. This paper aims to propose an
integrated framework for the evaluation of ontologies. The
proposed framework uses a knowledge representation approach,
criteria-based approach, software engineering approach, and
layer-based approach to evaluate the quality of the ontologies
based on various criteria.

Keywords: Ontology, ontology evaluation, semantic,
knowledge representation, OOPS!

1 Introduction

Knowledge representation and reasoning is a field of
‘Artificial Intelligence’ that encodes knowledge, beliefs,
actions, feelings, goals, desires, preferences, and all other
mental states in the machine. Nowadays, ontology is
prominently used to represent knowledge. Earlier than
ontologies, semantic network and semantic frame emerged, but
they were lacking in formal semantics despite the fact that they
had semantic in the name [30]. Ontologies offer the richest
machine-interpretable (rather than just machine-processable)
and explicit semantics and are being used today extensively for
semantic interoperability and integration. Ontology is a
knowledge representation formalism that reduces the problem
of big semantic loss in the process of modelling knowledge [24].
Ontology does not only provide sharable and reusable
knowledge, but it also provides a common understanding of the
knowledge; as a result, the interoperability and
interconnectedness of the model make it priceless for addressing
the issues of querying data. Ontology work with concepts and
relations that are very close to the working of the human brain.
It also provides a way to represent any data format like
unstructured, semi-structured, structured, and enables data

* Department of Software Engineering, Email:
narayan.debnath@eiu.edu.vn, archana.patel@eiu.edu.vn, debarshi.
mazumder@eiu.edu.vn, phuc.nguyenmanh@eiu.edu.vn, ngoc.ha@
eiu.edu.vn.

fetching with semantics. The key requirement of ontology is the
development of suitable languages for the representation and
extraction of information. Varieties of ontology languages have
been developed, and the most operable and standard language is
web ontology language (OWL) [18]. Ontology query language
plays a very important role in extracting and processing the
information. SPARQL is one of the most widely used ontology
query languages [25]. By using these semantic technologies
(Ontology, SPARQL, OWL), users and systems can interact and
share information with each other in an intelligent manner.

Ontology can be developed either from scratch or by
modifying an existing ontology [28]. Many well-known
ontology repositories are available that contain more than a
thousand ontologies about a domain, such as-

• OBO Foundry: It contains biological science-related
ontologies

• Bio portal: It is a comprehensive repository of biomedical
ontologies

• Agro portal: It is a vocabulary and ontology repository for
agronomy related domains

• OLS: It provides single-point access to the latest version of
biomedical ontologies

Users use these repositories to choose the ontology for an
application. Ontology evaluation is a way that determines the
relevance and importance of the ontology in a specified domain
[35]. Ontology evaluation is an essential process for the
development and maintenance of an ontology. Mainly, we need
to evaluate the ontology because of two reasons:

1. The developed ontology needs to be evaluated to check the
quality of the ontology. The ontology evaluation is also a
phase of the ontology development life cycle.

2. For the reusability purpose, we work with the existing
ontologies. However, when more than one ontology is
available for a domain, then it is hard to choose one
ontology among them. In such a case, we need to evaluate
the ontology to find the best-suited ontology according to
the need.

The work of ontology evaluation is focused on five questions
[28]. What should be evaluated? Why should it be evaluated?
When should it be evaluated? What should be the base of the
evaluation? What are the possible criteria to evaluate the
design and implementation of an ontology? The various tools

mailto:narayan.debnath@eiu.edu.vn
mailto:archana.patel@eiu.edu.vn
mailto:debarshi.%20mazumder@eiu.edu.vn
mailto:debarshi.%20mazumder@eiu.edu.vn
mailto:phuc.nguyenmanh@eiu.edu
mailto:ngoc.ha@%20eiu.edu.vn
mailto:ngoc.ha@%20eiu.edu.vn

112 IJCA, Vol. 29, No. 2, June 2022

are proposed in the literature to evaluate the ontology; some are
available on the web. These tools are grouped into two
categories: domain-dependent ontology evaluation tools and
domain-independent ontology evaluation tools. These tools
evaluate the design of ontologies based on various criteria like,
accuracy, adaptability, cognitive adequacy, completeness,
clarity, expressiveness, conciseness, consistency, and
grounding. In contrast, computational efficiency, precision,
recall, and practical usefulness are used to evaluate the
implementation of an ontology. Many studies are available for
the evaluation of the ontology; however, they have some
limitations:

1. The existing studies usually show only a set of criteria and
questions, and they do not show the guidelines to evaluate
the ontology.

2. The effort to evaluate the ontology is very high as no tool
available that concisely evaluates the ontology.

3. The evaluation heavily depends on the evaluator’s
expertise to understand the evaluation criteria and
questions.

4. The evaluation is still very subjective.

The proposed work presents an integrated framework for
ontology evaluation called InFra_OE. The framework takes
into account four fundamental principles: (a) It supports five
roles of knowledge representation proposed by Davis [10] (b) It
is based on the evaluation of the effectiveness of the coding
standard (a software engineering approach) (c) It integrates the
OOPS! tool for anomalies detection (d) It uses a layer-based
approach. The main contributions of this work are: (a) to
propose an integrated framework for ontology evaluation that
integrate the features of four approaches, namely five roles of
knowledge representation, approach for evaluation of software
development methodology, ontology pitfall scanner (OOPS!)
tool, and different layers of ontologies. (b) to propose an
algorithm for the step-by-step execution of the proposed
framework. The rest of the paper is organized as follows:
Section 2 shows the definitions of important concepts that are
required to understand the proposed framework. Section 3
discusses the available literature of ontology evaluation.
Section 4 describes the proposed framework and algorithm. The
last section concludes the paper.

2 Background

Ontology Scope: The first step of ontology development is
to determine the scope of an ontology. In ontological
engineering, ontology scope shows the specification and design
aspects for the representation of the knowledge [12]. The scope
of an ontology can be classified into three aspects: Domain
scope (determines that the scope of the ontology is relevant to
the task for which ontology is designed), conceptual scope
(determines that ontology will represent the hierarchical and
taxonomical concepts), technical scope (shows that the
specifications and requirements for ontologies are integrated
smoothly and correctly in terms of ontology integration and

application in practice).
Ontology Layers: The structure of the ontology is complex,

and it is hard to evaluate the whole ontology once. So, it is
required to evaluate the ontology according to its different
layers. The layer-based ontology evaluation approach allows
users to use different techniques for different layers [19].
Mainly, ontology has four different layers: Lexicon/vocabulary
layer (This layer evaluates the ontology with respect to
knowledge representation and conceptualization of ontologies
like naming criteria for concepts, instances, and facts.),
structure/ architecture layer (this layer evaluates the hierarchical
and taxonomic elements of ontology like hierarchical relations
among concepts). Representation/semantic layer (this layer
evaluates the ontology with respect to the semantic elements),
context/application layer (This layer evaluates the ontology
according to the context and application where the ontology
would be used. Typically, evaluation looks at how the outcomes
of the application are affected by the use of ontology).

Type of Ontology: Mainly, four types of ontologies are
available, namely upper ontology, domain ontology, task
ontology, and application ontology. The upper ontology
occupies general concepts or terms like matter, time, and space.
The aim of the upper ontologies is to support broad semantic
interoperability among domain ontologies by providing a
common platform for the formulation of the definitions. The
domain ontology is developed to capture and relate the content
of specific domains (e.g., medical, electronic, digital domain) or
part of the world. Domain ontologies use the services of upper
ontologies. The task ontology contains fundamental concepts
according to a general activity or task. It is a specification of
element relationships of tasks to explain how tasks can exist and
be used in a specific environment. Task ontology serves as a
foundation for using tasks in certain fields, like in the field of
management, and it defines what element it has and what type
of relationships can be established with other tasks. The
application ontology is a specialized ontology focused on a
specific application. It has a very narrow context and limited
reusability because it depends on the particular scope and
requirements of a specific application. Application ontologies
are typically developed ad hoc by the application designers.

Ontology Development Methodology: In the literature,
various authors have developed ontologies for the semantical
analysis of data [9]. However, the major problem for ontology
developers is to choose the right methodology that builds
correct, complete, and concise ontology as per requirement.
Ontology development methodology describes the step-by-step
process for ontology development. The most famous used
methodologies are TOVE, Enterprise Model Approach,
METHONTOLOGY, and KBSI IDEF5. These methodologies
have various steps for ontology development, and some steps
are common among them. Figure 1 shows the relationship
among these methodologies via arrows (double-headed arrows)
[11].

The most important step of ontology development is to
identify the purpose and fix the boundary/scope of the ontology.
This can be achieved by writing competency questions and the
ontology and impose constraints on the classes and their

IJCA, Vol. 29, No. 2, June 2022 113

Figure 1: Most popular and extensively used ontology development methodologies

properties as required. Ontology evaluation is the vital step of
ontology development methodologies. It shows the quality of
the developed ontology based on various crietria like
completeness (ontology must contain all the required
information as per domain need), and accuracy (ontology must
be free from anomalies and is able to infer the correct answer).
The last step of ontology development methodology is to
document the ontologies that can become the base of other
activities. Apart from these methodologies, three ontology
development methodologies, namely Neon, YAMO, and
SAMOD are also available in the literature [11].

Ontology Evaluation Quality Criteria: Ontology
evaluation checks the quality and quantity of an ontology based
on various criteria [23]. The essential criteria are:

• Accuracy: It is determined by the definitions, descriptions
of entities like classes, properties, and individuals. This
criterion states that the ontology is correct.

• Clarity: Clarity evaluates how well an ontology
communicates the intended meaning of specified concepts.
Clarity is determined by a number of factors. First and
foremost, definitions must be objective and independent of
social or computational circumstances. Social events or
computational needs may motivate the definition of a
notion. Second, ontologies should utilize definitions for
classes rather than descriptions. Third, entities should be
adequately documented and completely labeled in all
essential languages, among other things. Most of these
criteria are best examined using criterion-based techniques
such as OntoClean.

• Completeness: It states that the ontology covers complete
information about a specified domain. Sometimes some
important information about the entities is missing in the
ontology, which leads to an ambiguity problem and
hampers the results of reasoning. Precision and recall are
measured to check the incompleteness problem in the

ontology. Precision shows the ability of an ontology to
present only relevant items, whereas recall shows the ability
of an ontology to present all relevant items. The
completeness of entities depends on the level of granularity
agreed to in the whole ontology.

• Adaptability: It measures the adaptability of an ontology
and shows how far the ontology anticipates its uses. An
ontology should offer the conceptual foundation for a range
of anticipated tasks.

• Consistency/Coherence: Consistency highlights the fact
that the ontology does not include or allow for any
inconsistencies. An ontology should be coherent, which
means that it should allow inferences that are compatible
with the definitions. The defining axioms should be
logically consistent. Coherence should also apply to
imprecisely defined ideas, such as those given in natural
language documentation. An example of a contradiction is
the element Lion's description, “A lion is a giant cat that
lives in pride,” while possessing a logical axiom
ClassAssertion(ex: Type of chocolate ex: Lion).
Consistency can be evaluated using criteria-based
techniques that focus on axioms. It can also be recognized
depending on the ontology's performance in a specific job.

• Reusability: The feature indicates that good ontologies
immediately lead to increased data reuse and improved
collaboration across application and domain boundaries.
The reusability of an ontology may be determined by
analysing the various metadata that is available for it or by
investigating the interactions within its specific
community.

• Computational efficiency: It shows the flexibility of an
ontology with the tools, specifically focusing on the speed
of the reasoner that infers the information from the
ontology.

• Extendibility: Extendibility defines the high-level needs of
an ontology design that must be specialized enough for
usability, extendable for upgrades, abstract enough for

114 IJCA, Vol. 29, No. 2, June 2022

reusability, and compatible with current applications even
after future modifications. An ontology is not anticipated
to contain all of the potential information, attributes, and
constraints of the domain it represents. As a result, several
versions addressing the same body of information are
feasible as far as the ontology design meets specified
standards. In general, a good ontology holds adequate
knowledge to develop expertise in solving significant
issues.

• Minimal encoding bias: This criterion represents that
encoding bias should be minimized because knowledge-
sharing agents may be developed with a variety of libraries
and representation styles. An encoding bias occurs when
representation choices are selected purely for the sake of
notation or implementation. This quality highlights the
platform-independent representation of knowledge.

• Conciseness: It examines the usefulness and preciseness of
the stored information in an ontology. An ontology is
called precise if it does not store any useless or unnecessary
definitions; if any explicit redundancies of definitions of

entities and between definitions of entities do not exist.
• Minimal ontological commitment: This criterion evaluates

that the ontology should define just those terms that are
necessary for communicating information compatible with
that theory. Nonrelevant information should not be part of
the top-level ontology. Top-level ontology can be further
specialized by the respective community.

• Expandability: This shows the effort that needs to be put to
add new definitions and more knowledge to an entity of an
ontology without altering the set of well-defined properties
already guaranteed.

• Sensitiveness: This examines how small changes in a
definition of an entity alter the set of well-defined
properties already guaranteed.

• Organizational fitness: It investigates how ontology is
easily deployed within the organization.

• Agreement: Measured through the proportion of agreement
that experts have with respect to ontology elements, that is,
by measuring the consensus of a group of experts.

Table 1: Most commonly identified ontology evaluation criteria
Thomas Gruber Gómez Pérez Denny Vrandecic Gangemi

Clarity √ √

Consistency √ √

Coherence √ √

Extendibility √

Completeness √ √

Minimal encoding bias √

Conciseness √ √

Minimal ontological commitment √

Expandability √

Sensitiveness √

Accuracy

Adaptability √

Computational efficiency √

Organizational fitness √

Agreement √

User Satisfaction √

Task √

Topic √

Modularity √

IJCA, Vol. 29, No. 2, June 2022 115

• User Satisfaction: This can be evaluated by dedicated
research or reliability assessment

• Task: This deals with measuring an ontology according to
its fitness to some goals, postconditions, preconditions,
options, constraints, and others.

• Topic: This measures the ontology according to its fitness
for a repository of existing knowledge.

• Modularity: Modularity measures fitness to a repository of
existing reusable components.

3 Related Work

There are a lot of studies available for ontology evaluation.
These studies are grouped into two categories: domain-
dependent ontology evaluation studies and domain-independent
ontology evaluation studies. The domain-dependent ontology
evaluation studies show the evaluation of domain dependant
ontologies and discuss the available tool for the same. The
domain-independent ontology evaluation studies show the
evaluation of domain-independent ontologies and discuss the
available tool for the same [25]. Figure 2 shows the domain
dependent and independent tools.

Figure 2: Ontology evaluation tools

SSN Ontology Validator [21] is used to validate the new
ontology of the IoT domain. The validator gives a validation
report that reports inconsistencies in an ontology. The SSN
validator receives the ontology and compares it with the SSN
ontology and other ontologies associated with it. OntoKeeper
Validator [1] evaluates biodiversity ontologies with different
levels of granularity. It analyzed the ontology files using
semiotic metrics (semiotics has three branches, namely,
syntactic, pragmatic, and semantic) and detects the quality score
of the biodiversity ontology based on various parameters,
namely richness, interpretability, comprehensiveness, and
accuracy. OWL Validator [17] aims to ensure that all concepts
and properties in the ontology are specified as per the W3C

standard. OWL validator shows an error message with the
detailed report when an input ontology does not support the
selected profile. W3C RDF/XML validator [33] validates the
RDF document by tracking the RDF issues and shows a warning
message when an error occurs. W3C RDF validator shows the
number of tuples (subject-object-predicate) that are encoded in
the ontology as well as its graphical representation. This
validator aims to ensure that the document is syntactically valid.

Ontology Pitfall Scanner! (OOPS!) [34] tool shows the
pitfalls or anomalies of an ontology. OOPS! shows the 41 types
of pitfalls and groups them into three categories, namely, minor
pitfalls (these pitfalls are not serious and no need to remove),
important pitfalls (not very serious pitfalls but need to remove),
critical pitfalls (these pitfalls hamper the quality of an ontology
and need to remove them before using the ontology).
OntoMetrics tool [22] calculates the statistical information
about an ontology. It has five types of metrics, namely, Base
metric, Schema metrics, Knowledge base metric, Class metric,
and Graph metrics. OntologyFixer tool [31] allows the detection
and correction of errors. It uses various metrics to measure the
different aspects of the quality of an ontology. These metrics
are ANOnto (shows annotation richness), CBOnto (shows the
coupling between objects), CROnto (shows class richness),
INROnto (shows the number of relations per class), LCOMOnto
(shows lack of cohesion in methods), NOMOnto (shows the
number of properties per class), RCOnto (shows the distribution
of instance across class), RFCOnto (shows response measure for
a class), and RROnto (shows relationship richness). To detect
the pitfalls of an ontology, OntologyFixer integrated OOPS!
tool. OntoVal tool [3] evaluates the OWL ontologies by
nontechnical domain specialists and allows users to provide
textual feedback for each evaluated term and evaluate the
correctness of the developed ontology via an integrated engine.
OntoVal starts the ontology evaluation by collecting
information about the participant (name; age; domain
experience level, ranging from 0 to 10; ontology experience
level, ranging from 0 to 10). The ontology evaluation process
of OntoVal is divided into three stages, namely, class
evaluation, property evaluation, and overall evaluation. The
Semiotic-based Ontology Evaluation (S-OntoEval) tool [13]
aims to evaluate the quality of the ontology by taking three
metrics, namely, syntactic, semantic, and pragmatic, that are
considered different aspects of the ontology quality. In essence,
there are three types of evaluation levels, namely, structural
level, functional level, and usability related level.

OQuaRE framework [14] evaluates the quality of an ontology
on the basis of both quality models and quality metrics.
OQuaRE adapts and reuses five characteristics from the
SQuaRE, namely, Structural (it specifies the formal and
semantic important properties of an ontology), functional
adequacy (it includes the degree of accomplishment of
functional requirements), Reliability (it checks the level of
performance under stated conditions), Operability (it shows the
effort needed for building an ontology and individual
assessment), Maintainability (it shows the ability of ontologies
to be modified by changes in environments). The Ontology
Quality Analysis (OntoQA) approach [32] evaluates the design

116 IJCA, Vol. 29, No. 2, June 2022

and representation of knowledge of ontology, and the placement
of instances within the ontology and its effective usage. The
OntoQA categorizes the quality of the ontology into three
groups, namely, Schema metrics, Knowledgebase metrics, and
Class metrics.

OntoClean Methodology [16] validates the adequacy of the
ontology hierarchy based on general ontological notions,
namely, essence, unity, and identity. These notions are used to
characterize relevant aspects of the intended meaning of classes,
properties, and relations. It checks the correctness of the
ontology hierarchy via the principles of metaproperties, namely,
rigidity (this property is essential to all their instances), unity
(refers to being able to recognize all parts that form an
individual entity), identity (refers that all instances are identified
in the same way), and dependence (captures a meta-property of
certain relational roles).

Full Ontology Evaluation (FoEval) model [6] is a ranking and
selection tool that has three features, namely: it allows the user
to select a set of metrics that help in the evaluation process, this
tool enables the user to evaluate the locally stored and searched
ontologies from different search engines or repositories, it
captures the structural and semantic information of a domain. It
includes a rich set of metrics, namely, coverage, richness,
comprehensiveness, and computational efficiency.

4 Proposed Framework

The proposed framework consists of three phases, namely
Input phase, Processing Phase, and Output phase, whereas the
processing phase contains four modules (a) Evaluation based on
Role of Knowledge Representation, (b) OOPS! (c) Ontology
Code Effectiveness, and (d) Layer Based Evaluation. The
human interaction is required in two modules, namely
evaluation based on the role of knowledge representation and
layer-based evaluation. All the modules of the processing phase
are executed parallelly, and the final result is calculated by
taking the mean value of obtained results from all four modules.
Figure 3 shows the proposed integrated framework for ontology
evaluation.

I. Input Phase: It consists of knowledge base and expert
person. The knowledge base consists of domain ontologies,
core ontologies, and upper ontologies. Any type of these
ontologies can be input into the processing phase. The expert
assigns the appropriate value of parameters of these ontologies
as per need. The expert input is required in two modules of the
processing phase. The proposed framework is called
semiautomatic because of the involvement of the experts.

Figure 3: InFra_OE: An integrated framework for ontology evaluation

IJCA, Vol. 29, No. 2, June 2022 117

II. Processing Phase: This phase takes ontologies from the
knowledge base and then executes all the four modules of the
processing phase over it. These modules evaluate the ontologies
from different aspects and generate different results for the
ontology evaluation.

a) Evaluation based on Role of Knowledge Representation:
Davis [10] has presented five roles for the discussion of
knowledge representation. These roles clearly describe What is
Knowledge Representation? We use these roles for the
evaluation of ontology [4]:

• Substitute: This role shows how ontology approaches the
real world. It focuses on which concepts should be
represented and which should be omitted. For example,
vehicle, rim, tires, and handlebars are the concepts of the
bicycle. The concepts which are close to the real world
need to be represented to fulfill this role of knowledge
representation.

• Ontological Commitments: This role shows how the
ontology is closer to the real world. This role will be
fulfilled better if the representation is more consistent. For
example, the more consistent representation is a bicycle is

a vehicle and a vehicle is an object as compared to bicycle
is an object.

• Intelligent Reasoning: This role represents how the
ontology correctly infers the real world. This role will be
fulfilled by the concise representation of the relations and
attributes. For example, the vehicle is a bicycle because it
has two tires, thin wheels, and handlebars.

• Efficient Computation: This role represents how the
machine can think about a domain and extract the
information within minimum time (i.e., computational
time). Suppose, all the websites have a bicycle domain
ontology, and the user is searching for a bicycle which has
a red color, two tires of size x, and manufactured by
company y, then the machine must be able to find this
bicycle in a few seconds.

• Human Expression: This role represents how easy it is to
understand the modelling. This role will be achieved by a
clear declaration/representation of the concepts and
relations. For example, the concept of bicycle is
represented by bicycle, not any other words like bi or bic.

Each of these roles is fulfilled by some questions (shown in
Table 2) and shows different criteria of ontology evaluation.

Table 2: Connection between role, questions, ontology development phases, and ontology evaluation criteria
Role Questions Ontology Development Phases Ontology Evaluation Criteria

Substitute Q1. Address the document that specify
the scope and objective of the
ontology.

Scope Determination,

Concept Extraction, Encoding

Completeness, Adaptability

Q2. Address the coherence between the
document of Q1 and modelling of
the ontology.

Q3. Address the reusability of the
concepts that model the real world.

Ontological

Commitments

Q4. Address about the representation
scheme for a specific domain

Concept Extraction and

Encoding

Conciseness, Consistency

Q5. Address about the representation
scheme for an abstract domain

Q6. Address the coherence with the real
world.

Intelligent

Reasoning

Q7. Address the reasoning power of
ontology

Evaluation Consistency

Efficient

Computation

Q8. Address computational performance
in term of successfully executed
queries.

Evaluation Computational efficiency

Q9. Address computational performance
in term of reasoner speed.

Human

Expression

Q10. Address the easy and precise
understanding of the modelling.

Encoding Clarity

118 IJCA, Vol. 29, No. 2, June 2022

The evaluation of an ontology with respect to five roles are
calculated by the below mentioned equation [9].

by identifying the similarity in an ontology code and
identification of the duplicate in a code (known as clones). In

exp {−0.44 + 0.03(𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 × 𝑆𝑆𝑆𝑆)𝐸𝐸 + 0.02(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝐶𝐶𝐶𝐶)𝐸𝐸 + 0.01(𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 × 𝑅𝑅𝑅𝑅)𝐸𝐸 + 0.02�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝐶𝐶𝐶𝐶�𝐸𝐸 − 0.66𝐿𝐿𝐸𝐸𝐿𝐿𝐶𝐶𝐸𝐸 − 25 (0.1 × 𝑁𝑁𝑁𝑁)𝐸𝐸}
1 + exp {−0.44 + 0.03(𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 × 𝑆𝑆𝑆𝑆)𝐸𝐸 + 0.02(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝐶𝐶𝐶𝐶)𝐸𝐸 + 0.01(𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 × 𝑅𝑅𝑅𝑅)𝐸𝐸 + 0.02�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝐶𝐶𝐶𝐶�𝐸𝐸 − 0.66𝐿𝐿𝐸𝐸𝐿𝐿𝐶𝐶𝐸𝐸 − 25 (0.1 × 𝑁𝑁𝑁𝑁)𝐸𝐸}

(1)

The parameter E indicates the evaluators/experts that assign
the value of all the parameters and evaluates the quality of the
ontology based on the five roles of knowledge representation.

• CovS shows the mean value of role 1 i.e. Substitute by
rating all the three questions corresponding to role 1.

• CovC shows the mean value of role 2 i.e. Ontological
Commitments by rating all the three questions
corresponding to role 2.

• CovR shows the mean value of role 3 i.e. Intelligent
Reasoning by rating the question corresponding to role 3.

• CovP shows the mean value of role 4 i.e. Efficient
Computation by rating all the two questions corresponding
to role 4.

• LExpi shows the value of the evaluator/expert experience,
its value will be 1 if the expert has good knowledge about
the ontologies otherwise 0.

• Nl value will be 1 if the expert will not be able to answer
all the questions of the goal.

• The value of Sb = 1, Co = 1, Re = 1, Cp = 1, if total quality
will be calculated otherwise it will be 0 according to the
absence of any role which indicates the partial ontology
evaluation.

(b) OOPS!: It is a web-based tool that shows the pitfalls or
anomalies of an ontology. OOPS! shows the 41 types of
different pitfalls starting from P01 to P41. Basically, OOPS!
groups the pitfalls under three categories, namely minor pitfalls
(these pitfalls are not serious and no need to remove), important
pitfalls (not very serious pitfalls but need to remove), critical
pitfalls (these pitfalls hamper the quality of an ontology and
need to remove them before using ontology). The pitfall
describes the number of features that could create problems
during reasoning. We have calculated the pitfall rate by using
the following equation [27]

𝐴𝐴 = ∑ 𝑃𝑃𝑖𝑖
𝑛𝑛
𝑖𝑖=1
𝑁𝑁

 (2)

Pi represents the total number of pitfall cases according to the
pitfall type Pi, and N is the total number of tuples (ontology
size). The high value of the pitfall rate implies a more
significant number of anomalies and vice-versa. To calculate
the quality of the ontology, we subtract the obtained pitfall rate
(A) by 1. It focuses on the completeness, consistency, and
conciseness criteria of ontology evaluation.

(c) Ontology Code Effectiveness: Ontology code effective-
ness evaluates the size and complexity of the ontology’s code.
Basically, it shows the conciseness of the developed ontology

software engineering, the quality of the code is determined by
various techniques like Line of code (LOC), function point, etc.
However, we evaluate the effectiveness of the ontology coding
standard by the Goal-Question-Metric (GQM) approach
proposed by Basili et al. [5]. Figure 4 shows the GQM
approach. We calculate the ontology size by LOC, which shows
the number of tuples stored in the ontology. The size of the
ontology does not depend on the annotation properties as they
serve metadata information about the entities. We have ignored
nine annotation properties, namely- backwardCompatibleWith,
comments, deprecated, incompatibleWith, isDefinedBy, label,
priorVersion, seeAlso, and versionInfo. These properties are
supported by the protégé tool.

(d) Layer Based Evaluation: The structure of the ontology is
complex, and it is hard to evaluate the whole ontology at once.
Hence, it is good practice to evaluate the ontology based on the
layer approach. Mainly, ontology has four different layers [7]:

• Lexicon/Vocabulary layer: This layer evaluates the
ontology with respect to knowledge representation and
conceptualization of ontologies like naming criteria for
concepts, instances, and facts. Ex- Bicycle or bic.

• Structure/ Architecture layer: This layer evaluates the
hierarchical and taxonomic elements of ontology, like
hierarchical relations among concepts. Ex- human must be
a superclass of Male and Female.

• Representation/ Semantic layer: This layer evaluates the
ontology with respect to the semantic elements. Ex- Mouse
should be able to explain itself either mouse is a device or
mouse is an animal.

• Context/Application layer: This layer evaluates the
ontology according to the context and application where the
ontology would be used. Typically, evaluation looks at
how the outcomes of the application are affected by the use
of ontology.

The advantage of the layer-based ontology evaluation
approach is that it allows users to use different techniques at
different ontology layers. We use the syntactic approach at
Lexicon/Vocabulary layer; wordnet (lexical database of
semantic relations between words) at the Structure/Architecture
Layer; Semantic approach at the Representation/semantic layer;
and Pragmatic approach at the Context/Application layer.

Syntactic Approach: It measures the quality of the ontology
based on syntax and the way it is written. It focuses on syntactic
correctness (checks how ontology language’s rules are
compiled), Richness (shows the number of ontological entities)
[8]. The overall syntactic quality is calculated by below
mentioned equation-

IJCA, Vol. 29, No. 2, June 2022 119

Figure 4: Goal-questions-metrics approach

𝐿𝐿𝑅𝑅 = 𝑤𝑤1 × 𝐿𝐿𝐿𝐿 + 𝑤𝑤2 × 𝑅𝑅𝑅𝑅 (3)

La= Number of violated axioms over the total number of
axioms

Ri= Used number of ontological features over the total
number of ontological features

• Semantic Approach: It deals with the meaning of the entity
that is derived from the syntax via logic. It focuses on
Interpretability (reveals that every ontological term shows
correct meaning in everyday usage), Consistency (shows
the ontological terms are uniformly defined and lack
duplicate terms), Clarity (shows that all terms are
unambiguously represented) [3]. The overall Semantic
quality is calculated by below mentioned equation-

𝑆𝑆𝑅𝑅 = 𝑤𝑤3 × 𝐼𝐼𝐼𝐼 + 𝑤𝑤4 × 𝐶𝐶𝐶𝐶 + 𝑤𝑤5 × 𝐶𝐶𝑁𝑁 =(4)

In: Terms which has at least one-word sense over the
total number of terms

CO: Number of duplicated terms divided by the total
number of terms

Cl: the average word sense per term over the number of
terms

• Pragmatic Approach: It deals with inferential meaning, not
merely logical inference, but the subtler aspects of
communication expressed through indirection [20]. It

focuses on comprehensiveness (shows the coverage of
domain), accuracy (shows the truthfulness of the
statement), and relevancy (shows the relevancy of ontology
in particular applications).

𝐶𝐶𝐶𝐶𝐼𝐼 = 𝑤𝑤6 × 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑤𝑤7 × 𝐴𝐴𝐴𝐴 + 𝑤𝑤8 × 𝑅𝑅𝑅𝑅 (5)

Com= percentage number of instances, classes, and
properties of the ontology to a group of ontologies.

AC= truth statement over the total statement.
Re= varies and depends on the possible use-case of the

ontology.

III. Output Phase: This phase shows the numeric value for
the evaluated results by taking the mean of all the four modules
of process6ing, namely Evaluation based on Role of Knowledge
Representation, OOPS!, Ontology Code Effectiveness, and
Layer based approach. The obtained value lies between [0,1].
The highest value shows that ontology has good quality.

InFra_OE has mainly four functions KR(), OOPS(), OCE(),
and LBE (). The function KR() corresponds to the five roles of
knowledge representation (module 1 of phase 2) and returns an
integer value calculated by equation 1. The function OOPS() is
used for OOPS! tools [29] and shows the working of module 2
of phase 2. It returns an integer value by subtracting 1 from the
pitfall rate (A). The function OCE() shows the ontology code
effectiveness by calculating the size of the ontology (excluding
annotation properties) [15] and shows the working of module 3

Evaluate effectiveness
of coding standards

Who is using Standards?

What is coder productivity?

What is code quality?

Proportion of coders
-using standards
-using language

Experience of coders
-with standard
-with language

-with environment

Code size (lines of code,
Function points, etc.)

Effort

Errors

Goal

Questions

Metrics

120 IJCA, Vol. 29, No. 2, June 2022

Algorithm for InFra_OE

Processing:
,utput:

Input:
Expert E, KB, number of ontologies L
Function- KR(), OOPS(), OCE(), LBE ()
Integer- OE1, OE2, OE3, OE4, OE, KR, OOPS, LE, OE, KRR, FKRR, Ano, NoAno, CovS, CovC, CovR, CovCP, TPi,
TP, N, Le, Se, Co, St, TLE, La, Ri, In, CO, Cl, Com, Ac, Re, Con, w1, w2, w3, w4, w5, w6, w7, w8
Boolean- LExpi, Nl, Sb, Co, Re, Cp
Integer- TP=0; Range- {0.25, 0.50, 0.75, 1}
 Processing:
𝐿𝐿 ← 𝑃𝑃𝑅𝑅𝐴𝐴𝑃𝑃 𝐶𝐶𝐼𝐼𝑜𝑜𝐶𝐶𝑁𝑁𝐶𝐶𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶 𝑜𝑜ℎ𝑅𝑅 𝐾𝐾𝐾𝐾 // L is the total number of ontologies stored in the KB
For (𝐿𝐿𝑅𝑅 = 1; 𝐿𝐿𝑅𝑅 ≤ 𝐿𝐿; 𝐿𝐿𝑅𝑅 + +) {
 {
 𝐶𝐶𝐸𝐸1 ← 𝐾𝐾𝑅𝑅 ()
 𝐶𝐶𝐸𝐸2 ← 𝐶𝐶𝐶𝐶𝑃𝑃𝑆𝑆
 𝐶𝐶𝐸𝐸3 ← 𝐶𝐶𝐶𝐶𝐸𝐸
 𝐶𝐶𝐸𝐸4 ← 𝐿𝐿𝐾𝐾𝐸𝐸
 }
 Int KR () // function KR() corresponding to 5 role of KR
{
 For (𝐸𝐸 = 1; 𝐸𝐸 ≤ 𝐸𝐸𝐿𝐿; 𝐸𝐸 + +) // Ex is the total number of experts
 {
 CovS ← 𝐶𝐶𝑅𝑅𝐿𝐿𝐼𝐼 𝐶𝐶𝑓𝑓 𝑓𝑓𝐿𝐿𝑜𝑜𝑅𝑅𝐼𝐼𝑜𝑜 𝑜𝑜𝑅𝑅𝐶𝐶𝑅𝑅𝐼𝐼 𝑜𝑜𝐶𝐶 𝑞𝑞𝑞𝑞𝑅𝑅𝑞𝑞𝑜𝑜𝑅𝑅𝐶𝐶𝐼𝐼𝑞𝑞 𝑄𝑄1,𝑄𝑄2, 𝐿𝐿𝐼𝐼𝑎𝑎 𝑄𝑄3
 CovC ← 𝐶𝐶𝑅𝑅𝐿𝐿𝐼𝐼 𝐶𝐶𝑓𝑓 𝑓𝑓𝐿𝐿𝑜𝑜𝑅𝑅𝐼𝐼𝑜𝑜 𝑜𝑜𝑅𝑅𝐶𝐶𝑅𝑅𝐼𝐼 𝑜𝑜𝐶𝐶 𝑞𝑞𝑞𝑞𝑅𝑅𝑞𝑞𝑜𝑜𝑅𝑅𝐶𝐶𝐼𝐼𝑞𝑞 𝑄𝑄4,𝑄𝑄5, 𝐿𝐿𝐼𝐼𝑎𝑎 𝑄𝑄6
 CovR ← 𝐶𝐶𝑅𝑅𝐿𝐿𝐼𝐼 𝐶𝐶𝑓𝑓 𝑓𝑓𝐿𝐿𝑜𝑜𝑅𝑅𝐼𝐼𝑜𝑜 𝑜𝑜𝑅𝑅𝐶𝐶𝑅𝑅𝐼𝐼 𝑜𝑜𝐶𝐶 𝑞𝑞𝑞𝑞𝑅𝑅𝑞𝑞𝑜𝑜𝑅𝑅𝐶𝐶𝐼𝐼𝑞𝑞 𝑄𝑄7
 CovCp ← 𝐶𝐶𝑅𝑅𝐿𝐿𝐼𝐼 𝐶𝐶𝑓𝑓 𝑓𝑓𝐿𝐿𝑜𝑜𝑅𝑅𝐼𝐼𝑜𝑜 𝑜𝑜𝑅𝑅𝐶𝐶𝑅𝑅𝐼𝐼 𝑜𝑜𝐶𝐶 𝑞𝑞𝑞𝑞𝑅𝑅𝑞𝑞𝑜𝑜𝑅𝑅𝐶𝐶𝐼𝐼𝑞𝑞 𝑄𝑄8, 𝐿𝐿𝐼𝐼𝑎𝑎 𝑄𝑄9

 KRR← exp {−0.44+0.03(𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 ×𝑆𝑆𝑆𝑆)𝐸𝐸+0.02(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ×𝐶𝐶𝐶𝐶)𝐸𝐸+0.01(𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅×𝑅𝑅𝑅𝑅)𝐸𝐸+0.02�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝×𝐶𝐶𝐶𝐶�𝐸𝐸−0.66𝐿𝐿𝐸𝐸𝐿𝐿𝐶𝐶𝐸𝐸−25 (0.1 ×𝑁𝑁𝑁𝑁)𝐸𝐸}
1+ exp {−0.44+0.03(𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 ×𝑆𝑆𝑆𝑆)𝐸𝐸+0.02(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ×𝐶𝐶𝐶𝐶)𝐸𝐸+0.01(𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅×𝑅𝑅𝑅𝑅)𝐸𝐸+0.02�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝×𝐶𝐶𝐶𝐶�𝐸𝐸−0.66𝐿𝐿𝐸𝐸𝐿𝐿𝐶𝐶𝐸𝐸−25 (0.1 ×𝑁𝑁𝑁𝑁)𝐸𝐸}

 } FKRR ← FKRR + KRR
return FKRR }

 Int OOPS () // function OOPS() corresponding to OOPS! tool
{
run OOPs! tool on the selected ontology Li
Pitfall ← calculate total number of cases of obtained pitfalls
 {
For (𝑃𝑃𝑅𝑅 = 1; 𝑃𝑃𝑅𝑅 ≤ 𝑃𝑃𝑅𝑅𝑜𝑜𝑓𝑓𝐿𝐿𝑁𝑁𝑁𝑁; 𝑃𝑃𝑅𝑅 + +)
 {

TPi ← cases of Pi
TP ← TP + TPi

 }
 𝐴𝐴𝐼𝐼𝐶𝐶 ← 𝑇𝑇𝑃𝑃

𝑁𝑁
 // N is the total number of tuples

 NoAno ← 1- Ano
} return NoAno }

Int OCE() ← calculate size of ontology, excluding annotation properties // function OCE() corresponding ontology’s size
Int LBE () {
For (𝐸𝐸 = 1; 𝐸𝐸 ≤ 𝐸𝐸𝐿𝐿; 𝐸𝐸 + +) // Ex is the total number of experts
 {

𝐿𝐿𝑅𝑅 ← 𝑤𝑤1 × 𝐿𝐿𝐿𝐿 + 𝑤𝑤2 × 𝑅𝑅𝑅𝑅
𝑆𝑆𝑅𝑅 ← 𝑤𝑤3 × 𝐼𝐼𝐼𝐼 + 𝑤𝑤4 × 𝐶𝐶𝐶𝐶 + 𝑤𝑤5 × 𝐶𝐶𝑁𝑁
𝐶𝐶𝐶𝐶𝐼𝐼 ← 𝑤𝑤6 × 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑤𝑤7 × 𝐴𝐴𝐴𝐴 + 𝑤𝑤8 × 𝑅𝑅𝑅𝑅
𝑆𝑆𝑜𝑜 ← 𝐴𝐴ℎ𝑅𝑅𝐴𝐴𝑃𝑃 𝑞𝑞𝑅𝑅𝐶𝐶𝐿𝐿𝐼𝐼𝑜𝑜𝑅𝑅𝐴𝐴 𝑓𝑓𝑅𝑅𝑁𝑁𝐿𝐿𝑜𝑜𝑅𝑅𝐶𝐶𝐼𝐼𝑞𝑞 𝑆𝑆𝑅𝑅𝑜𝑜𝑤𝑤𝑅𝑅𝑅𝑅𝐼𝐼 𝑤𝑤𝐶𝐶𝑓𝑓𝑎𝑎𝑞𝑞

𝐿𝐿𝐸𝐸 ←
𝐿𝐿𝑅𝑅 + 𝑆𝑆𝑅𝑅 + 𝐶𝐶𝐶𝐶 + 𝑆𝑆𝑜𝑜

4

 } return LBE} }

IJCA, Vol. 29, No. 2, June 2022 121

of phase 2. This function also has an integer value. The last
function LBE() evaluates the ontology with respect to the four
layers of ontology and uses different formulas at different layers
like the syntactic approach is used at the lexicon layer, wordnet
is utilized at the structure layer, etc. This function shows the
working of module 3 of phase 2. The expert involvement occurs
in two modules (module 1: evaluation based on 5 roles of
knowledge representation; module 4: layer-based ontology
evaluation), and they assign the value to the various parameters
ranging {0.25, 0.50, 0.75, 1}. This range is defined by Bandeira
et al. [4] after experimentation (we have mapped the range
provided by Bandeira et al. [4] on a 0 to 1 scale for consistency
purpose). The final value of evaluation is determined by taking
the mean value of the four modules.

Evaluation of InFra_OE Framework: For the evaluation
of InFra_OE framework, we have taken four Covid-19
Ontologies namely CODO, COKPME, COVID19, and
LONGCOVID [26]. The details of these ontologies are
mentioned below-

1. An Ontology for Collection and Analysis of COviD-19
Data (CODO): The CODO ontology is a data model that
publishes Covid-19 data on the web as a knowledge graph.

2. The CODO aims to show the patient data and cases of
Covid-19. The latest version of COVID19 was released in
Sept 2020.

3. COKPME: This ontology is used to analyse the
precautionary measures that help in controlling the spread
of Covid-19. COKPME ontology is able to handle the
various competence questions. The latest version of
COKPME was released in Sept 2021.

4. COVID-19 Surveillance Ontology (COVID19): This
ontology supports surveillance activities and is designed
as an application ontology for the Covid-19 pandemic.
The developed COVID-19 surveillance ontology ensures
transparency and consistency. The latest version of
COVID19 was released in May 2020.

5. Long Covid Phenotype Ontology (LONGCOVID): It is
RCGP RSC Long Covid Phenotype ontology. The latest
version of LONGCOVID was released in Oct 2021.

We have examined the pitfalls of these ontologies by OOPS!
tool and the obtained results are mentioned in Table 3. The
numbers (e.g. 1, 2, 4,..) that are contained in Table 3 denotes the
total number of cases in accordance with the given pitfalls, like
CODO ontology contain 1 case of pitfall P04. The sign ×
indicates no pitfall case is available in the respective ontology.

Table 3: Obtained pitfalls of covid-19 ontologies
Ontologies

→
Pitfalls ↓

CODO COKPME COVID19 LONG
COVID

Minor Pitfalls
P04 1 2 4 1
P07 × × × ×
P08 58 14 × 12
P13 38 15 × ×
P20 3 × × ×
P21 × 1 × ×
P22 1 1 × ×
P32 × × ×

Important Pitfalls
P10 1 1 1 ×
P11 58 14 × ×
P24 4 × × ×
P25 4 × × ×
P30 2 × × ×
P34 7 × × ×
P38 1 × 1 1
P41 × × 1 1

Critical Pitfalls
P19 × 3 × ×

Output:
𝐶𝐶𝐸𝐸 ← 𝑂𝑂𝐸𝐸1+ 𝑂𝑂𝐸𝐸2+ 𝑂𝑂𝐸𝐸3+𝑂𝑂𝐸𝐸4

4
 // OE is the value of evaluation results that lies between 0 ≤ 𝐶𝐶𝐸𝐸 ≤ 1

122 IJCA, Vol. 29, No. 2, June 2022

We have calculated the pitfall rate by using equation (2). The
value for the parameters of five role of knowledge
representation is mentioned Table 4 and these values are used
according to equation (1) to calculate the quality of the ontology
based on the five role of knowledge representation. The Figure
5 shows the comparison among the three ontology evaluation
methods namely OOPS! tool, Five role of knowledge
representation (KR), and the proposed InFra_Ont framework.
The Figure 5 depicts that-

• OOPS! tool- The LONGCOVID ontology has 0.454 pitfall

rate, which is the highest as compared to other Covid-19
ontologies and COVID19 ontology has 0.042 pitfall rate,

which is the lowest as compared to other Covid-19
ontologies.

• Five Role of Knowledge Representation (KR)- The
COKPME ontology has 0.3947 pitfall rate, which is the
highest as compared to other Covid-19 ontologies and
CODO ontology has 0.2950 pitfall rate, which is the lowest
as compared to other Covid-19 ontologies.

• InFra_Ont Framework- The LONGCOVID ontology has
0.42405 pitfall rate, which is the highest as compared to
other Covid-19 ontologies and CODO ontology has 0.1905
pitfall rate, which is the lowest as compared to other Covid-
19 ontologies.

 Table 4: Value for parameters of five role of knowledge representation

Ontologies →
Parameters ↓

CODO COKPME COVID19 LONGCOVID

COVS 0.75 0.75 0.833 0.833

COVC 0.833 0.75 0.5 0.5

COVR 0.75 0.5 0.75 0.75

COVCP 0.875 0.75 0.625 0.625

LExpE 0.75 0.75 0.75 0.75

Figure 5: Ontology evaluation via OOPS! tool, KR, and InFra_Ont

0.086

0.125

0.042

0.454

0.295

0.3947 0.3941 0.3941

0.1905

0.2598

0.21805

0.42405

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CODO COKPME COVID19 LONGCOVID

Q
ua

lit
y

Va
lu

e

Covid-19 Ontologies
OOPS!
KR
InFra_Ont

IJCA, Vol. 29, No. 2, June 2022 123

The obtained results show that proposed INFra_Ont
framework is better as compared to the existing frameworks as
it successfully examines the good quality ontology among the
available ontologies.

5 Conclusion and Future Research

Ontology provides a way to encode human intelligence so that
machines can understand and make decisions by referring to this
intelligence. For this reason, ontologies are used in every
domain, and now, it becomes important to know the quality of
the ontology. Ontology evaluation provides a set of methods
and approaches that determine the quality of the ontology based
on various criteria. The proposed integrated framework for
ontology evaluation uses four well-known approaches to
accommodate various criteria of evaluation. The proposed
framework needs expert involvement in two approaches,
namely evaluation based on the five roles of knowledge
representation and evaluation based on the layer approach. The
proposed algorithm shows the step-by-step execution of the
InFra_OE and the evaluation of InFra_Ont framework shows
that it is better as compared to the existing frameworks. The
future work of this paper will be based on the evaluation of the
proposed framework over different types of ontologies

References

[1] M. Amith, F. Manion, C. Liang, M. Harris, D. Wang, Y.
He, and C. Tao, “OntoKeeper: Semiotic-Driven Ontology
Evaluation Tool for Biomedical Ontologists.” 2018 IEEE
International Conference on Bioinformatics and
Biomedicine (BIBM), IEEE, pp. 1614-1617, December
2018.

[2] M. Amith and C. Tao, “Modulated Evaluation Metrics for
Drug-Based Ontologies,” Journal of Biomedical
Semantics, 8(1):1-8, 2017.

[3] C. V. S. Avila, G. Maia, W. Franco, T. V. Rolim, A. D. O.
da Rocha Franco, A. D. O., and V. M. P. Vidal, “OntoVal:
A Tool for Ontology Evaluation by Domain Specialists,”
ER Forum/Posters/Demos, pp. 143-147, November 2019.

[4] J. Bandeira, I. I., Bittencourt, P., Espinheira, and S.
Isotani, “FOCA: A Methodology for Ontology
Evaluation,” arXiv preprint arXiv:1612.03353, 2016.

[5] V. R. Basili and D. M. Weiss, “A Methodology for
Collecting Valid Software Engineering Data,” IEEE
Transactions on Software Engineering, 6:728-738, 1984.

[6] A. B. Bouiadjra and S. M. Benslimane, “FOEval: Full
Ontology Evaluation,” 2011 7th International Conference
on Natural Language Processing and Knowledge
Engineering, IEEE, pp. 464-468, November 2011.

[7] J. Brank, M. Grobelnik and D. Mladenic, “A Survey of
Ontology Evaluation Techniques,” Proceedings of the
Conference on Data Mining and Data Warehouses
(SiKDD 2005), Slovenia: Citeseer Ljubljana, pp. 166-170,
October 2005.

[8] A. Burton-Jones, V. C. Storey, V. Sugumaran, and P.
Ahluwalia, “A Semiotic Metrics Suite for Assessing the

Quality of Ontologies,” Data & Knowledge Engineering,
55(1):84-102, 2005.

[9] M. Cristani and R. Cuel, “A Survey on Ontology Creation
Methodologies,” International Journal on Semantic Web
and Information Systems (IJSWIS), 1(2):49-69, 2005.

[10] R. Davis, H. Shrobe, and P. Szolovits, “What is a
Knowledge Representation?” AI magazine, 14(1):17-17,
1993.

[11] N. C. Debnath, A. Patel, D. Mazumder, P. N. Manh, and
N. H. Minh, “Evaluation of Covid-19 Ontologies through
OntoMetrics and OOPS! Tools,” International Conference
on Expert Clouds and Applications (ICOECA), Lecture
Notes in Networks and Systems, Springer (ISSN: 2367-
3370), 2022.

[12] V. Devedzić, “Understanding Ontological Engineering,”
Communications of the ACM, 45(4), 136-144, 2002.

[13] R. Dividino, M. Romanelli, and D. Sonntag, “Semiotic-
Based Ontology Evaluation Tool (S-OntoEval),”
Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC'08), pp.
2687- 2692, May 2008.

[14] A. Duque-Ramos, J. T. Fernández-Breis, M. Iniesta, M.
Dumontier, M. E. Aranguren, S. Schulz, and R. Stevens,
“Evaluation of the OQuaRE Framework for Ontology
Quality,” Expert Systems with Applications, 40(7):2696-
2703, 2013.

[15] H. Fujita and I. Zualkernan, “Evaluating Software
Development Methodologies Based on Their Practices
and Promises,” Proceedings of the Seventh Somet New
Trends in Software Methodologies, Tools and Techniques
08, 182:14, 2008.

[16] N. Guarino and C. A. Welty, “An Overview of
OntoClean” Handbook on Ontologies, pp. 151-171, 2004.

[17] A. Gyrard, M. Serrano, and G. A. Atemezing, “Semantic
Web Methodologies, Best Practices and Ontology
Engineering Applied to Internet of Things,” 2015 IEEE
2nd World Forum on Internet of Things (WF-IoT), IEEE,
pp. 412-417, December 2015.

[18] D. Kalibatiene, and O. Vasilecas, Survey on Ontology
Languages. International Conference on Business
Informatics Research, Springer, Berlin, Heidelberg, pp.
124-141, October 2011.

[19] D. D. Kehagias, I. Papadimitriou, J. Hois, D. Tzovaras,
and J. Bateman, “A Methodological Approach for
Ontology Evaluation and Refinement,” ASK-IT Final
Conference. June. (Cit. on p.) pp. 1-13, June 2008.

[20] S. Kim and S. G. Oh, “Extracting and Applying Evaluation
Criteria for Ontology Quality Assessment,” Library Hi
Tech, Emerald Publishing, 37(3):338-354, 2019.

[21] S. Kolozali, T. Elsaleh, and P. M. Barnaghi, “A Validation
Tool for the W3C SSN Ontology based Sensory Semantic
Knowledge,” TC/SSN@ ISWC, pp. 83-88, October 2014.

[22] B. Lantow, “OntoMetrics: Putting Metrics into Use for
Ontology Evaluation,” KEOD, pp. 186-191, November
2016.

[23] M. McDaniel and V. C. Storey, “Evaluating Domain
Ontologies: Clarification, Classification, and

124 IJCA, Vol. 29, No. 2, June 2022

Challenges,” ACM Computing Surveys (CSUR), 52(4):1-
44, 2019.

[24] K. Munir, and M. S. Anjum, “The Use of Ontologies for
Effective Knowledge Modelling and Information
Retrieval,” Applied Computing and Informatics,
14(2):116-126, 2018.

[25] A. Patel, and N. C. Debnath, “Development of the
InBan_CIDO Ontology by Reusing the Concepts Along
with Detecting Overlapping Information,” Inventive
Computation and Information Technologies, Springer,
Singapore, pp. 349-359, 2022.

[26] A. Patel, N. C. Debnath, A. K. Mishra, and S. Jain,
“Covid19-IBO: A Covid-19 Impact on Indian Banking
Ontology Along with an Efficient Schema Matching
Approach,” New Generation Computing, 39(3):647-676,
2021.

[27] A. Patel, N. C. Debnath, and P, K. Shukla, “SecureOnt: A
Security Ontology for Establishing Data Provenance in
Semantic Web, Journal of Web Engineering, 21(4):1347-
1370, 2022.

[28] A. Patel, and S. Jain, “A Partition based Framework for
Large Scale Ontology Matching,” Recent Patents on
Engineering, 14(3):488-501, 2020.

[29] M. Poveda-Villalón, A. Gómez-Pérez and M. C. Suárez-
Figueroa, “Oops!(Ontology Pitfall Scanner!): An On-
Line Tool for Ontology Evaluation,” International
Journal on Semantic Web and Information Systems
(IJSWIS), 10(2):7-34, 2014.

[30] P. Q. Rashid, Semantic Network and Frame Knowledge
Representation Formalisms in Artificial Intelligence,
Doctoral Dissertation, Eastern Mediterranean University
(EMU)-Do˘gu Akdeniz Universitesi (DA ¨ U)), 2015...

[31] G. R. Roldan-Molina, J. R. Mendez, I. Yevseyeva, and V.
Basto-Fernandes, “Ontology Fixing by Using Software
Engineering Technology,” Applied Sciences, 10(18):6328,
2020.

[32] S. Tartir, I. B. Arpinar, M. Moore, A. P. Sheth, and B.
Aleman-Meza, “OntoQA: Metric-Based Ontology
Quality Analysis,” IEEE ICDM 2005 Workshop on
Knowledge Acquisition, 2005.

[33] T. Uddin Haider, “Natural Language Text to RDF Schema
Conversion and OWL Mapping for an e-Recruitment
Domain,” Applications of Advanced Computing in
Systems, Springer, Singapore, pp. 49-57, 2021.

[34] M. Poveda Villalon, A. Gómez-Pérez, and M. C. Suárez-
Figueroa, “OOPS!(Ontologty Pitfalls Scanner!): An On-
Line Tool for Ontology Evaluation,” International
Journal on Semantic Web and Information Sysems
(IJSWIS), 10(2):7-34, 2012.

[35] J. Yu, J. A. Thom, and A. Tam, “Requirements-Oriented
Methodology for Evaluating Ontologies,” Information
Systems, 34(8):766-791, 2009.

Narayan C. Debnath is currently
the Founding Dean of the School of
Computing and Information
Technology at Eastern
International University (EIU),
Vietnam. He is also serving as the
Head of the Department of
Software Engineering at EIU,
Vietnam. Dr. Debnath has been the
Director of the International
Society for Computers and their

Applications (ISCA), USA since 2014. Formerly, Dr. Debnath
served as a Full Professor of Computer Science at Winona State
University, Minnesota, USA for 28 years where he also served
as the Chairperson of the Computer Science Department for 7
years. Dr. Debnath earned a Doctor of Science (D.Sc.) degree
in Computer Science and also a Doctor of Philosophy (Ph.D.)
degree in Physics. In the past, he served as the elected President
and Vice President of ISCA, and has been a member of the
ISCA Board of Directors since 2001. Professor Debnath has
made significant contributions in teaching, research, and
services across the academic and professional communities. Dr.
Debnath is an author or co-author of over 500 publications in
numerous refereed journals and conference proceedings in
Computer Science, Information Science, Information
Technology, System Sciences, Mathematics, and Electrical
Engineering. Dr. Debnath is an editor of several books
published by Springer, Elsevier, CRC Press, and Bentham
Science Press on emerging fields of computing. He also served
as a guest editor of the Journal of Computational Methods in
Science and Engineering (JCMSE) published by the IOS Press,
the Netherlands.

Archana Patel is working as a
faculty of the Department of
Software Engineering, School of
Computing and Information
Technology, Eastern International
University, Binh Duong Province,
Vietnam. She has completed her
Postdoc from the Freie Universität

Berlin, Berlin, Germany. She has filed a patent titled “Method
and System for Creating Ontology of Knowledge Units in a
Computing Environment” in Nov 2019. She has received
Doctor of Philosophy (Ph.D.) in Computer Applications and PG
degree both from the National Institute of Technology (NIT)
Kurukshetra, India in 2020 and 2016, respectively. She has
qualified GATE and UGC-NET/JRF exams in year 2017. Dr.

IJCA, Vol. 29, No. 2, June 2022 125

Patel has also contributed in research project funded by Defence
Research and Development Organization (DRDO), for the
period of two year and her contribution in teaching is also
remarkable. Dr. Patel is an author or co-author of more than 30
publications in numerous referred journals and conference
proceedings. She has been awarded best paper award (four
times) in the international conferences. She has served as a
reviewer in various reputed journal and conferences. Dr. Patel
has received various awards for presentation of research work
at various international conferences, teaching and research
institutions. She has edited three books, served as a guest editor
in three reputed journals and served as a keynote at various
reputed international conferences. Her research interests are
Ontological Engineering, Semantic Web, Big Data, Expert
System and Knowledge Warehouse.

Debarshi Mazumder is presently
a lecturer in School of Computing
& Information Technology at
Eastern International University,
Binh Duong, Vietnam. He
received his M. Tech from
Jadavpur University, Kolkata,
India in 2013, and B. Tech from
West Bengal University of

Technology, Kolkata, India in 2008. His areas of research
interests are Image Processing, Pattern Recognition, Machine
Learning, IoT.

Manh-Phuc Nguyen received
his undergraduate from Eastern
International University in 2016.
He finished his master's degree
from the University of
Information Technology, Ho Chi
Minh National University, Viet
Nam. He has been a full-stack
software developer for 5 years
and turned to be a lecturer of

Software Engineering at Eastern International University. His
research interests include computer vision, ontology learning,
and software engineering. Recently, his work is focused on
methods of object recognition and object tracking in traffic
context and detect traffic violations. He would like to build a
computer vision-based system to improve safety on the road.

Minh Ngoc Ha has 20 years of
experience in the software
development field, with over 15
years as a leader and 10 years as a
technical director for some
software firms. He turned to be a
lecturer in Software Engineering
at Eastern International
University for nearly 10 years.

His research interests include Data Structures and Algorithms,
Software Engineering Methods, and teaching methodology. He
loves to share his knowledge, skills, and experience with
thousands of CIT students to promote them in their careers.

Journal Submission
The International Journal of Computers and Their Applications is published four times a year with the purpose of
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as
current innovative activities in the applications of computers. In contrast to other journals, this journal focuses on
emerging computer technologies with emphasis on the applicability to real world problems. Current areas of particular
interest include, but are not limited to: architecture, networks, intelligent systems, parallel and distributed computing,
software and information engineering, and computer applications (e.g., engineering, medicine, business, education,
etc.). All papers are subject to peer review before selection.
__

A. Procedure for Submission of a Technical Paper for Consideration

1. Email your manuscript to the Editor-in-Chief, Dr. Ajay Bandi. Email: ajay@nwmissouri.edu.

2. Illustrations should be high quality (originals unnecessary).

3. Enclose a separate page (or include in the email message) the preferred author and address for correspondence. Also, please
include email, telephone, and fax information should further contact be needed.

4. Note: Papers shorter than 10 pages long will be returned.

B. Manuscript Style:
1. WORD DOCUMENT: The text should be double-spaced (12 point or larger), single column and single-sided on 8.5 X

11 inch pages. Or it can be single spaced double column.
LaTex DOCUMENT: The text is to be a double column (10 point font) in pdf format.

2. An informative abstract of 100-250 words should be provided.
3. At least 5 keywords following the abstract describing the paper topics.
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first initials followed

by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and year.
5. The figures are to be integrated in the text after referenced in the text.

C. Submission of Accepted Manuscripts

1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS Word format
should be submitted to the Editor-in-Chief. If one wished to use LaTex, please see the corresponding LaTex template.

2. The submission may be on a CD/DVD or as an email attachment(s). The following electronic files should be included:

• Paper text (required).
• Bios (required for each author).

• Author Photos are to be integrated into the text.

• Figures, Tables, and Illustrations. These should be integrated into the paper text file.
3. Reminder: The authors photos and short bios should be integrated into the text at the end of the paper. All figures, tables,

and illustrations should be integrated into the text after being mentioned in the text.
4. The final paper should be submitted in (a) pdf AND (b) either Word or LaTex. For those authors using LaTex, please

follow the guidelines and template.
5. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that they are

transferring the copyright to ISCA or declaring the work to be government-sponsored work in the public domain. Also,
letters of permission for inclusion of non-original materials are required.

Publication Charges

After a manuscript has been accepted for publication, the contact author will be invoiced a publication charge of $500.00 USD to
cover part of the cost of publication. For ISCA members, publication charges are $400.00 USD publication charges are required.

Revised 2020

mailto:ajay@nwmissouri.edu

ISC
A

 IN
TER

N
A

TIO
N

A
L JO

U
R

N
A

L O
F C

O
M

PU
TER

S A
N

D
 TH

EIR
 A

PPLIC
A

TIO
N

S
V

ol. 29 N
o. 2, June 2022

	Final IJCA Journal for June 2022
	International Society for Computers
	Guest Editorial . 57
	Proposal and Evaluation of a Chinese Character Hash Function Based on Strokes for Fingerprinting . 59
	Antoine Bossard
	Robert N. K. Loh and K. C. Cheok

	Logical Modeling of Adiabatic Logic Circuits using VHDL with Examples 79
	Lee A. Belfore II
	Thomas Bidinger, Hannah Buzard, James Hearne, Amber Meinke, and Steven Tanner

	Integration of Multimodal Inputs and Interaction Interfaces for Generating Reliable Human-Robot Collaborative Task Configurations . 97
	Shuvo Kumar Paul, Pourya Hoseine, Arjun Vettath Gopinath, Mircea Nicolescue, and Monica Nicolescu
	In Fra_OE: An Integrated Framework for Ontology Evaluation . 111
	Narayan C. Debnath;, Archana Patel, Debarshi Mazumder, Phuc Nguyen Manh, and Ngoc Ha Minh

	new IJCA Jrnl inside front cover June 2022
	A publication of the International Society for Computers and Their Applications
	ASSOCIATE EDITORS

	Dr. Hisham Al-Mubaid
	Dr. Mark Burgin
	Dr. Sergiu Dascalu
	University of Nevada
	Reno, USA
	dascalus@cse.unr.edu
	Dr. Sami Fadali

	Dr. Vic Grout
	Glyndŵr University
	v.grout@glyndwr.ac.uk
	Dr. Yi Maggie Guo
	University of Michigan,
	Dearborn, USA
	hongpeng@brandeis.edu
	Dr. Wen-Chi Hou
	Southern Illinois University, USA
	hou@cs.siu.edu
	Dr. Ramesh K. Karne
	Towson University, USA
	Dr. Bruce M. McMillin
	Dr. Muhanna Muhanna
	Princess Sumaya University
	for Technology
	Amman, Jordan
	m.muhanna@psut.edu.jo
	Dr. Mehdi O. Owrang
	Dr. Xing Qiu
	University of Rochester, USA
	xqiu@bst.rochester.edu
	Dr. Abdelmounaam Rezgui
	Dr. Ramalingam Sridhar
	Dr. Junping Sun
	Dr. Jianwu Wang
	Dr. Yiu-Kwong Wong

	Dr. Rong Zhao

	Hu revised guest editorial-2
	1 Bossard j_hash
	Introduction
	Preliminaries
	Methodology
	Theoretical Evaluation: Size and Sparsity
	Memory Size Requirements
	Hash Function Sparsity

	Practical Evaluation: Collision Analysis
	Methodology
	Results
	Discussion

	Conclusions

	2h loh Cheok IJCA June 2022
	3c Belfore ijca_manuscript
	4 Bidinger Buzard Hearne Meinke Tanner
	Abstract
	1 Introduction
	2 Approach
	sufficient for the effect. Formally, this means that the search for causes is equivalent to searching for valid implications whose right-hand side is the effect and whose left-hand side is a disjunctive normal form expressing configurations of condit...
	3 Related Work
	4 Method
	4.1 A Brief Description

	9 Future Work

	5 Hoseine Gopinath Nicolescu Nicolscu
	6 Debnath Mazumber Nanh Minh
	Journal Submission Instructions2022
	Journal Submission

	IJCA Jrnl back outside cover June 2022

